Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ điểm A nằm ngoài đường tròn (O; R) với OA > 2R. Vẽ tiếp tuyến AB và cát tuyến ACD với (O) (B là tiếp điểm; AC < AD, tia AD không cắt đoạn thẳng OB). Gọi CE, DF là các đường cao của tam giác BCD.
a) Chứng minh: tứ giác DEFC nội tiếp và EF//AB.
b) Tia EF cắt AD tại G, BG cắt (O) tại H. Chứng minh: tam giác FHC đồng dạng tam giác GAB
c) Gọi I là giao điểm của CE và DF. Tia HI cắt DC tại M. Chứng minh: OM vuông góc với CD
Câu 1:
Gọi chiều rộng là x
Chiều dài là x+20
Theo đề, ta có: 2(x+x+20)=104
=>2x+20=52
=>2x=32
hay x=16
Vậy: Diện tích của miếng đất là 16x36=576(m2)
Xin lỗi nhưng e cần bài này dạng Giải bài bằng cách lập hệ phương trình ạ
Bài 1:
a: \(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=2\)
b: \(=\sqrt{11}+\sqrt{2}-\sqrt{11}-\sqrt{7}-\sqrt{2}=-\sqrt{7}\)
\(x^3=8+3\sqrt[3]{\left(4-2\sqrt[]{2}\right)\left(4+2\sqrt[]{2}\right)}\left(\sqrt[3]{4-2\sqrt[]{2}}+\sqrt[]{4+2\sqrt[]{2}}\right)\)
\(\Rightarrow x^3=8+6x\)
\(\Rightarrow x^3-6x=8\)
Do đó:
\(P=x\left(x^3-6x\right)-8x+24=8x-8x+24=24\)