K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2017

áp dụng hệ thức lg có AH ^2 =BH ,CH <=>BH,CH=36    (1)

TỪ BH-CH =9 =>BH =9+HC                                         (2)

TỪ (1) VÀ (2) SUY RA  HC=3cm hoặc CH = -12 cm vì cạnh tam giác k âm suy ra HC =3 cm suy ra BH=12 cm 

xong bn áp dụng pitago ý hay hệ thức lg cũng đc để tfm ra AB ,AC nha 

Ta có HC-HB=9

➞HC=9+HB

Áp dụng hệ thức lượng ta có:

AH2=HB.HCAH2=HB.HC

36=HB.(9+HB)36=HB.(9+HB)

⇔HB2+9HB-36=0

(HB−3)(HB+12)(HB−3)(HB+12)=0

⇔HB=3;HC=9

NV
12 tháng 8 2021

\(x^3=8+3\sqrt[3]{\left(4-2\sqrt[]{2}\right)\left(4+2\sqrt[]{2}\right)}\left(\sqrt[3]{4-2\sqrt[]{2}}+\sqrt[]{4+2\sqrt[]{2}}\right)\)

\(\Rightarrow x^3=8+6x\)

\(\Rightarrow x^3-6x=8\)

Do đó:

\(P=x\left(x^3-6x\right)-8x+24=8x-8x+24=24\)

25 tháng 5 2021

`A=1/(x+sqrtx)+(2sqrtx)/(x-1)-1/(x-sqrtx)`

`=(sqrtx-1+2x-sqrtx-1)/(sqrtx(x-1))`

`=(2x-2)/(sqrtx(x-1))`

`=2/sqrtx`

`b)A=1`

`<=>2/sqrtx=1`

`<=>sqrtx=2`

`<=>x=4(tm)`

AH
Akai Haruma
Giáo viên
1 tháng 5 2023

Bạn nên ghi đầy đủ đề ra nhé. 

1 tháng 5 2023

Từ điểm A nằm ngoài đường tròn (O; R) với OA > 2R. Vẽ tiếp tuyến AB và cát tuyến ACD với (O) (B là tiếp điểm; AC < AD, tia AD không cắt đoạn thẳng OB). Gọi CE, DF là các đường cao của tam giác BCD. 

a)    Chứng minh: tứ giác DEFC nội tiếp và EF//AB.

b)    Tia EF cắt AD tại G, BG cắt (O) tại H. Chứng minh: tam giác FHC đồng dạng tam giác GAB

c)     Gọi I là giao điểm của CE và DF. Tia HI cắt DC tại M. Chứng minh: OM vuông góc với CD