K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

M làm được 1d chưa??

11 tháng 11 2018

Đc rồi

28 tháng 2 2019

\(\dfrac{mx+5}{10}+\dfrac{x+10}{4}=\dfrac{m}{20}\)

\(\dfrac{2mx+10}{20}+\dfrac{4x+40}{20}=\dfrac{m}{20}\)

\(2mx+10+4x+40=m\)

\(2mx-m+4x+50=0\)

\(m\left(2x-1\right)+2\left(2x-1\right)+52=0\)

\(\left(m+2\right)\left(2x-1\right)=-52\)

Dễ thấy với \(m=-2\) ta có đẳng thức sai

Với m \(\ne-2\)

\(\left(m+2\right)\left(2x-1\right)=-52\)

\(\Rightarrow2x-1=\dfrac{-52}{m-2}\Rightarrow2x=\dfrac{m-50}{m-2}\)

\(\Rightarrow x=\dfrac{m-50}{2\left(m-2\right)}\)

NV
15 tháng 7 2021

ĐKXĐ: \(x\ne-1\)

Ta có:

\(\dfrac{mx-m-3}{x+1}=1\)

\(\Rightarrow mx-m-3=x+1\)

\(\Leftrightarrow\left(m-1\right)x=m+4\)

- Với \(m=1\) pt trở thành: \(0=5\) (ktm) \(\Rightarrow\) pt vô nghiệm

- Với \(m=-\dfrac{3}{2}\) pt trở thành: 

\(-\dfrac{5}{2}x=\dfrac{5}{2}\Rightarrow x=-1\) (ktm ĐKXĐ) \(\Rightarrow\) pt vô nghiệm

- Với \(m\ne\left\{-\dfrac{3}{2};1\right\}\Rightarrow x=\dfrac{m+4}{m-1}\)

Vậy:

- Với \(m=\left\{-\dfrac{3}{2};1\right\}\) pt vô nghiệm

- Với \(m\ne\left\{-\dfrac{3}{2};1\right\}\) pt có nghiệm duy nhất \(x=\dfrac{m+4}{m-1}\)

4 tháng 3 2022

x= 3m-3/m-2

Tại m =2 thì pt vô nghiệm 

Tại m khác 2 thì có nghiệm duy nhất vì đây là hàm bậc nhất

ĐKXĐ: \(x\ne2;x\ne m;x\ne2m\)

Ta có: \(\dfrac{3}{x-m}-\dfrac{1}{x-2}=\dfrac{2}{x-2m}\Leftrightarrow\dfrac{3}{x-m}-\dfrac{2}{x-2m}=\dfrac{1}{x-2}\)

\(\Leftrightarrow\dfrac{x-4m}{\left(x-m\right)\left(x-2m\right)}=\dfrac{1}{x-2}\Leftrightarrow\left(x-4m\right)\left(x-2\right)=\left(x-m\right)\left(x-2m\right)\)

\(\Leftrightarrow2x+xm=8m-2m^2\Leftrightarrow x\left(m+2\right)=2m\left(4-m\right)\)

- Nếu m=-2 thì 0x=-24; phương trình vô nghiệm

- Nếu \(m\ne-2\) thì \(x=\dfrac{2m\left(4-m\right)}{m+2}\) với đk \(x\ne2;x\ne m;x\ne2m\)

Với \(x\ne2\) thì \(8m-2m^2\ne2m+4\Leftrightarrow\left(m-1\right)\left(2m-4\right)\ne0\) hay

\(m\ne1\)\(m\ne2\)

Với \(x\ne m\) thì \(8m-2m^2\ne m^2+2m\Leftrightarrow3m\left(m-2\right)\ne0\) hay

\(m\ne0\)\(m\ne2\)

Với \(x\ne2m\) thì \(8m-2m^2\ne2m^2+4m\Leftrightarrow4m\left(m-1\right)\ne0\) hay

\(m\ne0\)\(m\ne1\)

Vậy với \(m\ne\pm2;m\ne0\)\(m\ne1\) thì phương trình có nghiệm \(x=\dfrac{2m\left(4-m\right)}{m+2}\)