Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn cần viết đề bằng công thức toán ( biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
b, pt \(\Leftrightarrow\)mx - 2=0
Nếu m=0 pt\(\Leftrightarrow\) -2=0 (vô lí)\(\Rightarrow\)m=2(loại)
Nếu m\(\ne\)0 pt có nghiệm x=\(\dfrac{2}{m}\)
giải và biện luận phương trình sau:
\(\frac{3}{x-m}-\frac{1}{x-2}=\frac{2}{x-2m}\) (với m là tham số)
ĐKXĐ: \(x\ne2;x\ne m;x\ne2m\)
Ta có: \(\dfrac{3}{x-m}-\dfrac{1}{x-2}=\dfrac{2}{x-2m}\Leftrightarrow\dfrac{3}{x-m}-\dfrac{2}{x-2m}=\dfrac{1}{x-2}\)
\(\Leftrightarrow\dfrac{x-4m}{\left(x-m\right)\left(x-2m\right)}=\dfrac{1}{x-2}\Leftrightarrow\left(x-4m\right)\left(x-2\right)=\left(x-m\right)\left(x-2m\right)\)
\(\Leftrightarrow2x+xm=8m-2m^2\Leftrightarrow x\left(m+2\right)=2m\left(4-m\right)\)
- Nếu m=-2 thì 0x=-24; phương trình vô nghiệm
- Nếu \(m\ne-2\) thì \(x=\dfrac{2m\left(4-m\right)}{m+2}\) với đk \(x\ne2;x\ne m;x\ne2m\)
Với \(x\ne2\) thì \(8m-2m^2\ne2m+4\Leftrightarrow\left(m-1\right)\left(2m-4\right)\ne0\) hay
\(m\ne1\) và \(m\ne2\)
Với \(x\ne m\) thì \(8m-2m^2\ne m^2+2m\Leftrightarrow3m\left(m-2\right)\ne0\) hay
\(m\ne0\) và \(m\ne2\)
Với \(x\ne2m\) thì \(8m-2m^2\ne2m^2+4m\Leftrightarrow4m\left(m-1\right)\ne0\) hay
\(m\ne0\) và \(m\ne1\)
Vậy với \(m\ne\pm2;m\ne0\) và \(m\ne1\) thì phương trình có nghiệm \(x=\dfrac{2m\left(4-m\right)}{m+2}\)
Với m = 1 hoặc m = -1 ta có:
0x = m
\(\Rightarrow\) m = 0
Với m \(\ne\) \(\pm1\) ta có:
x = \(\dfrac{m}{m^2-1}=\dfrac{m}{\left(m+1\right)\left(m-1\right)}\)
Vậy ...
Chúc bn học tốt! (Chắc vậy!)
x= 3m-3/m-2
Tại m =2 thì pt vô nghiệm
Tại m khác 2 thì có nghiệm duy nhất vì đây là hàm bậc nhất