Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có\(\frac{x+3}{97}+\frac{x+5}{95}+\frac{x+9}{91}=\frac{x+91}{9}+\frac{x+92}{8}+\frac{x+61}{39}\)
<=> \(\left(\frac{x+3}{97}+1\right)+\left(\frac{x+5}{95}+1\right)+\left(\frac{x+9}{91}+1\right)=\left(\frac{x+91}{9}+1\right)+\left(\frac{x+92}{8}+1\right)+\left(\frac{x+61}{39}+1\right)\)
<=>\(\frac{x+100}{97}+\frac{x+100}{95}+\frac{x+100}{91}=\frac{x+100}{9}+\frac{x+100}{8}+\frac{x+100}{39}\)
<=>\(\frac{x+100}{97}+\frac{x+100}{95}+\frac{x+100}{91}-\frac{x+100}{9}-\frac{x+100}{8}-\frac{x+100}{39}=0\)
<=> \(\left(x+100\right)\left(\frac{1}{97}+\frac{1}{95}+\frac{1}{91}-\frac{1}{9}-\frac{1}{8}-\frac{1}{39}\right)=0\)
Do \(\frac{1}{97}+\frac{1}{95}+\frac{1}{91}-\frac{1}{9}-\frac{1}{8}-\frac{1}{39}\ne0\)
Nên x+100=0 => x=-100
\(\frac{x+2}{2002}+\frac{x+5}{1999}+\frac{x+201}{1803}=-3\)
\(\Rightarrow\frac{x+2}{2002}+1+\frac{x+5}{1999}+1+\frac{x+201}{1803}+1=0\)
\(\Rightarrow\frac{x+2004}{2002}+\frac{x+2004}{1999}+\frac{x+2004}{1803}=0\)
\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)=0\)
Dễ thấy \(\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)>0\)nên x + 2004 = 0
Vậy x = -2004
\(\frac{x+2}{2002}+\frac{x+5}{1999}+\frac{x+201}{1803}=-3\)
\(\Leftrightarrow\frac{x+2}{2002}+1+\frac{x+5}{1999}+1+\frac{x+201}{1803}+1=-3+1+1+1\)
\(\Leftrightarrow\frac{x+2004}{2002}+\frac{x+2004}{1999}+\frac{x+2004}{1803}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)=0\)
\(\Leftrightarrow x+2004=0\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\ne0\right)\)
<=> x=-2004
a,\(\frac{x+2}{2002}+\frac{x+5}{1999}+\frac{x+201}{1803}=-3\)
\(< =>\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+5}{1999}+1\right)+\left(\frac{x+201}{1803}+1\right)=0\)
\(< =>\frac{x+2004}{2002}+\frac{x+2004}{1999}+\frac{x+2004}{1803}=0\)
\(< =>\left(x+2004\right).\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)=0\)
Do \(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\ne0\)
\(=>x+2004=0\)
\(=>x=-2004\)
\(\frac{x+1}{99}+\frac{x+3}{97}+\frac{x+5}{95}=\frac{x+7}{93}+\frac{x+9}{91}+\frac{x+11}{89}\)
\(\Rightarrow\frac{x+1}{99}+1+\frac{x+3}{97}+1+\frac{x+5}{95}+1\)\(=\frac{x+7}{93}+1+\frac{x+9}{91}+1+\frac{x+11}{89}+1\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{97}+\frac{x+100}{95}\)\(=\frac{x+100}{93}+\frac{x+100}{91}+\frac{x+100}{89}\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{97}+\frac{x+100}{95}\)\(-\frac{x+100}{93}-\frac{x+100}{91}-\frac{x+100}{89}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}-\frac{1}{93}-\frac{1}{91}-\frac{1}{89}\right)=0\)
Mà \(\left(\frac{1}{99}< \frac{1}{97}< \frac{1}{95}< \frac{1}{93}< \frac{1}{91}< \frac{1}{89}\right)\)nên \(\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}-\frac{1}{93}-\frac{1}{91}-\frac{1}{89}\right)< 0\)
\(\Rightarrow x+100=0\Leftrightarrow x=-100\)
Vậy x = -100
Ta có :
\(\frac{x+1}{65}+\frac{x+3}{63}< \frac{x+5}{61}+\frac{x+7}{59}\)
\(\Leftrightarrow\)\(\left(\frac{x+1}{65}+1\right)+\left(\frac{x+3}{63}+1\right)< \left(\frac{x+5}{61}+1\right)+\left(\frac{x+7}{59}+1\right)\)
\(\Leftrightarrow\)\(\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+5}{61}-\frac{x+7}{59}< 0\)
\(\Leftrightarrow\)\(\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)< 0\)
Vì \(\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)< 0\)
\(\Rightarrow\)\(x+66>0\)
\(\Rightarrow\)\(x>-66\)
Vậy \(x>-66\)
\(\frac{1927-x}{91}+\frac{1925-x}{93}+\frac{1923-x}{95}+\frac{1921-x}{97}+4=0\)
\(\Leftrightarrow\left(\frac{1927-x}{91}+1\right)+\left(\frac{1925-x}{93}+1\right)+\left(\frac{1923-x}{95}+1\right)+\left(\frac{1921-x}{97}+1\right)=0\)
\(\Leftrightarrow\frac{1927-x+91}{91}+\frac{1925-x+93}{93}+\frac{1923-x+95}{95}+\frac{1921-x+97}{97}=0\)
\(\Leftrightarrow\frac{2018-x}{91}+\frac{2018-x}{93}+\frac{2018-x}{95}+\frac{2018-x}{97}=0\)
\(\Leftrightarrow\left(2018-x\right)\left(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\right)=0\)
Vì \(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\ne0\)\(\Rightarrow2018-x=0\)\(\Leftrightarrow x=2018\)
Vậy tập nghiệm của phương trình là \(S=\left\{2018\right\}\)
\(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x+3}{97}+\frac{x+4}{96}\)
\(\Rightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1=\frac{x+3}{97}+1+\frac{x+4}{96}+1\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}=\frac{x+100}{97}+\frac{x+100}{96}\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}-\frac{x+100}{97}-\frac{x+100}{96}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)
Dễ thấy \(\left(\frac{1}{99}< \frac{1}{98}< \frac{1}{97}< \frac{1}{96}\right)\)nên \(\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)\ne0\)
\(\Rightarrow x+100=0\Rightarrow x=-100\)
Vậy x = -100
\(\frac{109-x}{91}+\frac{107-x}{93}+\frac{105-x}{95}+\frac{103-x}{97}+4=0\)
\(\Rightarrow\frac{109-x}{91}+1+\frac{107-x}{93}+1+\frac{105-x}{95}+1+\frac{103-x}{97}+1=0\)
\(\Rightarrow\frac{200-x}{91}+\frac{200-x}{93}+\frac{200-x}{95}+\frac{200-x}{97}=0\)
\(\Rightarrow\left(200-x\right)\left(\frac{1}{91}+\frac{1}{93}-\frac{1}{95}-\frac{1}{97}\right)=0\)
Dễ thấy \(\left(\frac{1}{91}>\frac{1}{93}>\frac{1}{95}>\frac{1}{97}\right)\)nên \(\left(\frac{1}{91}+\frac{1}{93}-\frac{1}{95}-\frac{1}{97}\right)\ne0\)
\(\Rightarrow200-x=0\Rightarrow x=200\)
Vậy x = 200
\(\Leftrightarrow\left(\dfrac{x-1}{99}-1\right)+\left(\dfrac{x-99}{1}-1\right)+\left(\dfrac{x-3}{97}-1\right)+\left(\dfrac{x-97}{3}-1\right)+\left(\dfrac{x-5}{95}-1\right)+\left(\dfrac{x-95}{5}-1\right)=0\)
=>x-100=0
=>x=100
c, Trừ hai vế cho 6
Vế trái thì lấy từng số hạng trừ 1 là được
\(\dfrac{x+3}{97}+\dfrac{x+5}{95}+\dfrac{x+9}{91}=\dfrac{x+91}{9}+\dfrac{x+92}{8}+\dfrac{x+61}{39}\)
=> \(\dfrac{x+3}{97}+1+\dfrac{x+5}{95}+1+\dfrac{x+9}{91}+1=\dfrac{x+91}{9}+1+\dfrac{x+92}{8}+1+\dfrac{x+61}{39}+1\)
=> \(\dfrac{x+100}{97}+\dfrac{x+100}{95}+\dfrac{x+100}{91}=\dfrac{x+100}{9}+\dfrac{x+100}{8}+\dfrac{x+100}{39}\)
=> \(\dfrac{x+100}{97}+\dfrac{x+100}{95}+\dfrac{x+100}{91}-\dfrac{x+100}{9}-\dfrac{x+100}{8}-\dfrac{x+100}{39}=0\)
=> \(\left(x+100\right).\left(\dfrac{1}{97}+\dfrac{1}{95}+\dfrac{1}{91}-\dfrac{1}{9}-\dfrac{1}{8}-\dfrac{1}{39}\right)=0\)
=> x = - 100 (do \(\dfrac{1}{97}+\dfrac{1}{95}+\dfrac{1}{91}-\dfrac{1}{9}-\dfrac{1}{8}-\dfrac{1}{39}\ne0\)
Ta có: \(\dfrac{x+3}{97}+\dfrac{x+5}{95}+\dfrac{x+9}{91}=\dfrac{x+91}{9}+\dfrac{x+92}{8}+\dfrac{x+61}{39}\)
\(\Leftrightarrow\dfrac{x+3}{97}+1+\dfrac{x+5}{95}+1+\dfrac{x+9}{91}+1=\dfrac{x+91}{9}+1+\dfrac{x+92}{8}+1+\dfrac{x+61}{39}+1\)
\(\Leftrightarrow\dfrac{x+100}{97}+\dfrac{x+100}{95}+\dfrac{x+100}{91}=\dfrac{x+100}{9}+\dfrac{x+100}{8}+\dfrac{x+100}{39}\)
\(\Leftrightarrow\dfrac{x+100}{97}+\dfrac{x+100}{95}+\dfrac{x+100}{91}-\dfrac{x+100}{9}-\dfrac{x+100}{8}-\dfrac{x+100}{39}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{97}+\dfrac{1}{95}+\dfrac{1}{91}-\dfrac{1}{9}-\dfrac{1}{8}-\dfrac{1}{39}\right)=0\)
mà \(\dfrac{1}{97}+\dfrac{1}{95}+\dfrac{1}{91}-\dfrac{1}{9}-\dfrac{1}{8}-\dfrac{1}{39}\ne0\)
nên x+100=0
hay x=-100
Vậy: S={-100}