Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> (1927-x/91 + 1)+(1925-x/93 + 1) + (1923-x/95 + 1) + (1921-x/97 + 1) = 0
<=> 2018-x/91 + 2018-x/93 + 2018-x/95 + 2018-x/97 = 0
<=> (2018-x).(1/91 + 1/93 + 1/95 + 1/97) = 0
<=> 2018-x = 0 ( vì 1/91 + 1/93 + 1/95 + 1/97 > 0 )
<=> x = 2018
Vậy x = 2018
Tk mk nha
a) Đặt x -3 = a
<=> a(a+2)(a+8)(a+10) - 297=0
<=> \(\left[a\left(a+10\right)\right]\left[\left(a+2\right)\left(a+8\right)\right]\)-297=0
<=> \(\left(a^2+10a\right)\left(a^2+10a+16\right)-297=0\)
Đặt \(a^2+10a=b\)
\(b^2+16b-297=0\)
\(\Rightarrow\left[{}\begin{matrix}b=11\\b=-27\end{matrix}\right.\)\(b=11\Rightarrow\left[{}\begin{matrix}a=1\\a=-11\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)
b= -27 \(\Rightarrow a=\varnothing\Rightarrow x=\varnothing\)
b) bấm máy ra nhân tử chung :D
c)
\(\Leftrightarrow\left(\frac{1927-X}{91}+1\right)+\left(\frac{1925-x}{93}+1\right)+...=0\)
\(\Leftrightarrow\frac{2018-x}{91}+\frac{2018-x}{93}+\frac{2018-x}{95}+\frac{2018-x}{97}=0\)
\(\Leftrightarrow\left(2018-x\right)\left(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\right)=0\)
<=> x = 2018
d) \(\Leftrightarrow\left(\frac{x-85}{15}-1\right)+\left(\frac{x-74}{13}-2\right)+\left(\frac{x-67}{11}-3\right)+\left(\frac{x-64}{9}-3\right)=0\)
giống câu c
\(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x+3}{97}+\frac{x+4}{96}\)
\(\Rightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1=\frac{x+3}{97}+1+\frac{x+4}{96}+1\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}=\frac{x+100}{97}+\frac{x+100}{96}\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}-\frac{x+100}{97}-\frac{x+100}{96}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)
Dễ thấy \(\left(\frac{1}{99}< \frac{1}{98}< \frac{1}{97}< \frac{1}{96}\right)\)nên \(\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)\ne0\)
\(\Rightarrow x+100=0\Rightarrow x=-100\)
Vậy x = -100
\(\frac{109-x}{91}+\frac{107-x}{93}+\frac{105-x}{95}+\frac{103-x}{97}+4=0\)
\(\Rightarrow\frac{109-x}{91}+1+\frac{107-x}{93}+1+\frac{105-x}{95}+1+\frac{103-x}{97}+1=0\)
\(\Rightarrow\frac{200-x}{91}+\frac{200-x}{93}+\frac{200-x}{95}+\frac{200-x}{97}=0\)
\(\Rightarrow\left(200-x\right)\left(\frac{1}{91}+\frac{1}{93}-\frac{1}{95}-\frac{1}{97}\right)=0\)
Dễ thấy \(\left(\frac{1}{91}>\frac{1}{93}>\frac{1}{95}>\frac{1}{97}\right)\)nên \(\left(\frac{1}{91}+\frac{1}{93}-\frac{1}{95}-\frac{1}{97}\right)\ne0\)
\(\Rightarrow200-x=0\Rightarrow x=200\)
Vậy x = 200
\(\dfrac{1909-x}{91}+\dfrac{1907-x}{93}+\dfrac{1905-x}{95}+\dfrac{1903}{97}+4=0\) ( Sửa đề)
⇔ \(\dfrac{1909-x}{91}+1+\dfrac{1907-x}{93}+1+\dfrac{1905-x}{95}+1+\dfrac{1903}{97}+1=0\) ⇔ \(\dfrac{2000-x}{91}+\dfrac{2000-x}{93}+\dfrac{2000-x}{95}+\dfrac{2000-x}{97}=0\)
⇔ \(\left(2000-x\right)\left(\dfrac{1}{91}+\dfrac{1}{93}+\dfrac{1}{95}+\dfrac{1}{97}\right)=0\)
Do : \(\dfrac{1}{91}+\dfrac{1}{93}+\dfrac{1}{95}+\dfrac{1}{97}>0\)
\(\text{⇔}2000-x=0\)
\(\text{⇔}x=2000\)
Vậy ,....
b, \(\frac{x+1}{99}+1+\frac{x+2}{98}+1=\frac{x+3}{97}+1+\frac{x+4}{96}+1\)
\(\frac{x+200}{99}+\frac{x+200}{98}=\frac{x+200}{97}+\frac{x+200}{96}\)
\(\frac{x+200}{99}+\frac{x+200}{98}-\frac{x+200}{97}-\frac{x+200}{96}=0\)
\(\left(x+200\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)
mà\(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\ne0\)
==> x+200=0
<=>x=-200
Vậy nghiệm của phương trình là x=-200
c, \(\frac{109-x}{91}+1+\frac{107-x}{93}+1+\frac{105-x}{95}+1+\frac{103-x}{97}+1=0\)
\(\frac{200-x}{91}+\frac{200-x}{93}+\frac{200-x}{95}+\frac{200-x}{97}=0\)
\(\left(200-x\right)\left(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\right)=0\)
mà \(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\ne0\)
==>200-x=0
<=>x=200
vậy nghiệm của pt là x=200
Ta có :
\(\frac{x+1}{65}+\frac{x+3}{63}< \frac{x+5}{61}+\frac{x+7}{59}\)
\(\Leftrightarrow\)\(\left(\frac{x+1}{65}+1\right)+\left(\frac{x+3}{63}+1\right)< \left(\frac{x+5}{61}+1\right)+\left(\frac{x+7}{59}+1\right)\)
\(\Leftrightarrow\)\(\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+5}{61}-\frac{x+7}{59}< 0\)
\(\Leftrightarrow\)\(\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)< 0\)
Vì \(\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\right)< 0\)
\(\Rightarrow\)\(x+66>0\)
\(\Rightarrow\)\(x>-66\)
Vậy \(x>-66\)
\(\frac{x+1}{99}+\frac{x+3}{97}+\frac{x+5}{95}=\frac{x+7}{93}+\frac{x+9}{91}+\frac{x+11}{89}\)
\(\Rightarrow\frac{x+1}{99}+1+\frac{x+3}{97}+1+\frac{x+5}{95}+1\)\(=\frac{x+7}{93}+1+\frac{x+9}{91}+1+\frac{x+11}{89}+1\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{97}+\frac{x+100}{95}\)\(=\frac{x+100}{93}+\frac{x+100}{91}+\frac{x+100}{89}\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{97}+\frac{x+100}{95}\)\(-\frac{x+100}{93}-\frac{x+100}{91}-\frac{x+100}{89}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}-\frac{1}{93}-\frac{1}{91}-\frac{1}{89}\right)=0\)
Mà \(\left(\frac{1}{99}< \frac{1}{97}< \frac{1}{95}< \frac{1}{93}< \frac{1}{91}< \frac{1}{89}\right)\)nên \(\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}-\frac{1}{93}-\frac{1}{91}-\frac{1}{89}\right)< 0\)
\(\Rightarrow x+100=0\Leftrightarrow x=-100\)
Vậy x = -100
\(\frac{x+2}{2002}+\frac{x+5}{1999}+\frac{x+201}{1803}=-3\)
\(\Rightarrow\frac{x+2}{2002}+1+\frac{x+5}{1999}+1+\frac{x+201}{1803}+1=0\)
\(\Rightarrow\frac{x+2004}{2002}+\frac{x+2004}{1999}+\frac{x+2004}{1803}=0\)
\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)=0\)
Dễ thấy \(\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)>0\)nên x + 2004 = 0
Vậy x = -2004
10) \(\frac{x+14}{86}+\frac{x+15}{85}+\frac{x+16}{84}+\frac{x+17}{83}+\frac{x+116}{4}=0\)
\(\Leftrightarrow\)\(\frac{x+14}{86}+1+\frac{x+15}{85}+1+\frac{x+16}{84}+1+\frac{x+17}{83}+1+\frac{x+116}{4}-4=0\)
\(\Leftrightarrow\)\(\frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)
\(\Leftrightarrow\)\(\left(x+100\right)\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\)\(x+100=0\) (vì 1/86 + 1/85 + 1/84 + 1/83 + 1/4 \(\ne\)0)
\(\Leftrightarrow\)\(x=-100\)
Vậy....
\(\frac{1927-x}{91}+\frac{1925-x}{93}+\frac{1923-x}{95}+\frac{1921-x}{97}+4=0\)
\(\Leftrightarrow\left(\frac{1927-x}{91}+1\right)+\left(\frac{1925-x}{93}+1\right)+\left(\frac{1923-x}{95}+1\right)+\left(\frac{1921-x}{97}+1\right)=0\)
\(\Leftrightarrow\frac{1927-x+91}{91}+\frac{1925-x+93}{93}+\frac{1923-x+95}{95}+\frac{1921-x+97}{97}=0\)
\(\Leftrightarrow\frac{2018-x}{91}+\frac{2018-x}{93}+\frac{2018-x}{95}+\frac{2018-x}{97}=0\)
\(\Leftrightarrow\left(2018-x\right)\left(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\right)=0\)
Vì \(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\ne0\)\(\Rightarrow2018-x=0\)\(\Leftrightarrow x=2018\)
Vậy tập nghiệm của phương trình là \(S=\left\{2018\right\}\)