K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 4 2021

Gọi chiều rộng hình chữ nhật là x>0 (m) 

Chiều dài hình chữ nhật: \(x+1\) (m)

Diện tích ban đầu: \(x\left(x+1\right)\)

Chiều dài sau khi thay đổi: \(\dfrac{5}{4}\left(x+1\right)\)

Diện tích lúc sau: \(\dfrac{5}{4}x\left(x+1\right)\)

Ta có pt:

\(\dfrac{5}{4}x\left(x+1\right)-x\left(x+1\right)=3\)

\(\Leftrightarrow x\left(x+1\right)=12\Leftrightarrow x^2+x-12=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-4< 0\left(loại\right)\end{matrix}\right.\)

Diện tích hcn ban đầu: \(3.\left(3+1\right)=12\left(m^2\right)\)

8 tháng 4 2021

5/4 ở đâu ạ 

13 tháng 1 2022

hic cíu mng oi

 

a: ĐKXĐ: \(x\notin\left\{10;-10;\sqrt{10};-\sqrt{10}\right\}\)

b: \(A=\dfrac{5x^3+50x+2x^2+20+5x^3-50x-2x^2+20}{\left(x^2-10\right)\left(x^2+10\right)}\cdot\dfrac{x^2-100}{x^2+4}\)

\(=\dfrac{10x^3+40}{\left(x^2-10\right)\left(x^2+10\right)}\cdot\dfrac{x^2-100}{x^2+4}\)

12 tháng 6 2021

bài 46:

a, \(x+y=2=>\left(x+y\right)^2=4\)\(=>x^2+y^2+2xy=4=>10+2xy=4\)

\(=>xy=\dfrac{4-10}{2}=-3\)

\(x^3+y^3=x^3+3x^2y+3xy^2+y^3-3xy\left(x+y\right)\)

\(=\left(x+y\right)^3\)\(-3xy\left(x+y\right)=2^3-3.\left(-3\right).2=26\)

\(b,\) \(x+y=a=>x^2+2xy+y^2=a^2\)

\(=>xy=\dfrac{a^2-b}{2}\)

có: \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3\left(\dfrac{a^2-b}{2}\right)a\)

\(=a^3-\dfrac{3a^3-3ab}{2}\)

12 tháng 6 2021

a) Gọi n = a2 + b2

Suy ra 2n = 2a2 + 2b2 = a2 + 2ab + b2 + a- 2ab + b2

             = (a + b)2 + (a - b)2

b) theo đề bài ta có: 2n = a2 + b2

=> n= a2/2 + b2/2 => (a2/4 + 2.a/2.b/2 + b2/4) + (a2/4 + 2a/2.b/2 + b2/4

                             = (a + b)2/2 + (a - b)2/2

c) n= (a2 + b2)2 = a+ 2a2.b2 + b= a4 - 2a2.b+ b4 + 4a2.b2

       = (a2 - b2)+ (2ab)2

d) m.n = (a2 + b2)(c2 + d2) = a2.c2 + a2. d2 + b2.c+ b2.d22

          = (a2.c2 + 2a2.b2.c2.d2 + b2.d2) + (a2.d- 2a2.b2.c2.d2 + b2.c2)

          = (ac +ab)2 + (ad + bc)2

Bài 5: 

a: Ta có: \(x^2-8x+17\)

\(=x^2-8x+16+1\)

\(=\left(x-4\right)^2+1>0\forall x\)

b: Ta có: \(4x^2-12x+13\)

\(=4x^2-12x+9+4\)

\(=\left(2x-3\right)^2+4>0\forall x\)

c: Ta có: \(x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

30 tháng 9 2021

Bài 5: 

a: Ta có: x2−8x+17x2−8x+17

=x2−8x+16+1=x2−8x+16+1

=(x−4)2+1>0∀x=(x−4)2+1>0∀x

b: Ta có: 4x2−12x+134x2−12x+13

=4x2−12x+9+4=4x2−12x+9+4

=(2x−3)2+4>0∀x=(2x−3)2+4>0∀x

c: Ta có: x2−x+1x2−x+1

=x2−2⋅x⋅12+14+34=x2−2⋅x⋅12+14+34

=(x−12)2+34>0∀x

26 tháng 6 2021

undefined

Bài 1.2

1: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

2) Ta có: \(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}+1}{3-\sqrt{x}}-\dfrac{3-11\sqrt{x}}{x-9}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{3x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)

5 tháng 9 2021

H1: x = 360o - 130o - 60o - 82o = 88o

H2: x = 360o - 90o - 90o - 72o = 108o

H3: x = 360o - 90o - 115o - 70o = 85o

H4: 2x = 360o - 71o - 105o = 184o

=> x = 184o : 2 = 62o

5 tháng 9 2021

Cảm mơn bạn ạ ❤️

6 tháng 5 2021

Bài 5 hình 1: (tự vẽ hình nhé bạn)
a) Xét ΔABD và ΔACB ta có:
\(\widehat{BAD}\)\(\widehat{BAC}\) (góc chung)
\(\widehat{ABD}\)\(\widehat{ACB}\) (gt)
=> ΔABD ~ ΔACB (g-g)
=> \(\dfrac{AB}{AC}\) = \(\dfrac{BD}{CB}\) = \(\dfrac{AD}{AB}\) (tsđd)
b) Ta có: \(\dfrac{AB}{AC}\) = \(\dfrac{AD}{AB}\) (cm a)
=> \(AB^2\) = AD.AC
=> \(2^2\) = AD.4
=> AD = 1 (cm)
Ta có: AC = AD + DC (D thuộc AC)
      => 4   =   1   + DC
      => DC = 3 (cm)
c) Xét ΔABH và ΔADE ta có: 
   \(\widehat{AHB}\) = \(\widehat{AED}\) (=\(90^0\))
   \(\widehat{ADB}\) = \(\widehat{ABH}\) (ΔABD ~ ΔACB)
=> ΔABH ~ ΔADE
=> \(\dfrac{AB}{AD}\) = \(\dfrac{AH}{AE}\) = \(\dfrac{BH}{DE}\) (tsdd)
Ta có: \(\dfrac{S_{ABH}}{S_{ADE}}\) = \(\left(\dfrac{AB}{AD}\right)^2\)\(\left(\dfrac{2}{1}\right)^2\)= 4
=> đpcm

6 tháng 5 2021

Tiếp bài 5 hình 2 (tự vẽ hình)
a) Xét ΔABC vuông tại A ta có:
\(BC^2\) = \(AB^2\) + \(AC^2\)
\(BC^2\) = \(21^2\) + \(28^2\)
BC = 35 (cm)
b) Xét ΔABC và ΔHBA ta có:
\(\widehat{BAC}\) = \(\widehat{AHB}\) ( =\(90^0\))
\(\widehat{ABC}\) = \(\widehat{ABH}\) (góc chung)
=> ΔABC ~ ΔHBA (g-g)
=> \(\dfrac{AB}{BH}\) = \(\dfrac{BC}{AB}\) (tsdd)
=> \(AB^2\) = BH.BC
=> \(21^2\) = 35.BH
=> BH = 12,6 (cm)
c) Xét ΔABC ta có:
BD là đường p/g (gt)
=> \(\dfrac{AD}{DC}\) = \(\dfrac{AB}{BC}\) (t/c đường p/g)
Xét ΔABH ta có: 
BE là đường p/g (gt)
=> \(\dfrac{HE}{AE}\) = \(\dfrac{BH}{AB}\) (t/c đường p/g)
Mà: \(\dfrac{AB}{BC}\) = \(\dfrac{BH}{AB}\) (cm b)
=> đpcm
d) Ta có: \(\left\{{}\begin{matrix}\widehat{HBE}+\widehat{BEH}=90^0\\\widehat{ABD}+\widehat{ADB=90^0}\\\widehat{HBE}=\widehat{ABD}\end{matrix}\right.\)
=> \(\widehat{BEH}=\widehat{ADB}\)
Mà \(\widehat{BEH}=\widehat{AED}\) (2 góc dd)
Nên \(\widehat{ADB}=\widehat{AED}\)
=> đpcm

24 tháng 6 2021

`c)-x^2+7x-2=-(x^2-7x)-2`

`=-(x^2-7x+49/4-49/4)-2`

`=-(x-7/2)^2+49/4-2`

`=-(x-7/2)^2+41/4<=41/4`

Dấu "=" xảy ra khi `x=7/2`

`d)-4x^2+8x-9=-(4x^2-8x)-9`

`=-(4x^2-8x+4-4)-9`

`=-(2x-2)^2-5<=-5`

Dấu "=" xảy ra khi `x=1`

`e)-3x^2+5x+10`

`=-3(x^2-5/3x)+10`

`=-3(x^2-5/3x+25/36-25/36)+10`

`=-3(x-5/6)^2+25/12+10`

`=-3(x-5/6)^2+145/12<=145/12`

Dấu "=" xảy ra khi`x=5/6`

1 tháng 7 2021

b. -x2-2x+15

= -(x-1)2+14

= 14-(x-1)2

Do (x-1)2 ≥0∀x nên 14-(x-1)2≤ 14

Dấu bằng xảy ra khi x=1

Vậy max=14 khi x=1