Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`c)-x^2+7x-2=-(x^2-7x)-2`
`=-(x^2-7x+49/4-49/4)-2`
`=-(x-7/2)^2+49/4-2`
`=-(x-7/2)^2+41/4<=41/4`
Dấu "=" xảy ra khi `x=7/2`
`d)-4x^2+8x-9=-(4x^2-8x)-9`
`=-(4x^2-8x+4-4)-9`
`=-(2x-2)^2-5<=-5`
Dấu "=" xảy ra khi `x=1`
`e)-3x^2+5x+10`
`=-3(x^2-5/3x)+10`
`=-3(x^2-5/3x+25/36-25/36)+10`
`=-3(x-5/6)^2+25/12+10`
`=-3(x-5/6)^2+145/12<=145/12`
Dấu "=" xảy ra khi`x=5/6`
16)
a) Tam giác ABC vuông tại A : \(AB^2+AC^2=BC^2\)
BC=10 ⇒FC=10-5.2=4.8
b) Tam giác ABC và tam giác FEC có
C chung
\(\dfrac{AC}{FC}=\dfrac{BC}{EC}=0.6\)
Do đó tam giác ABC đồng dạng với tam giác FEC (C-G-C)
c)⇒Góc FEC=ABC=AEM
Tam giác MAE và tam giác MFB có
Góc M chung
Góc AEM = MBF (CMT)
⇒ 2 Tam giác đồng dạng (G-G)
⇒\(\dfrac{MA}{MF}=\dfrac{ME}{MB}\)⇒ MA.MB=MF.MB
a) Xét \(\Delta ABC\) vuông tại A có :
\(AB^2+AC^2=BC^2\) (Định lí Py-ta-go)
=> \(BC^2=6^2+8^2=100\)
=> BC = 10 (cm)
=> CF = BC\(-\)BF = 10 - 5,2 = 4,8 (cm)
Vậy BC = 10 cm ; CF = 4,8 cm
b) Xét \(\Delta CAB\) và \(\Delta CFE\) có
\(\left\{{}\begin{matrix}\widehat{C}:chung\\\dfrac{CF}{CE}=\dfrac{CA}{CB}\left(\dfrac{4,8}{6}=\dfrac{8}{10}=\dfrac{4}{5}\right)\end{matrix}\right.\)
=>\(\Delta CAB\sim\Delta CFE\) (c-g-c)
Vậy \(\Delta CAB\sim\Delta CFE\)
c) Xét \(\Delta MAEvà\Delta MFB\) có
\(\left\{{}\begin{matrix}\widehat{M}:chung\\\widehat{MAE}=\widehat{MFB}=90^0\end{matrix}\right.\)
=> \(\Delta MAE\sim\Delta MFB\) (g-g)
=> \(\dfrac{MA}{MF}=\dfrac{ME}{MB}\)
=> MA.MB = MF.ME
Vậy MA.MB = ME.MF
d) Xét \(\Delta BMF\) và \(\Delta BCA\) có
\(\left\{{}\begin{matrix}\widehat{B}:chung\\\widehat{BFM}=\widehat{BAC}=90^0\end{matrix}\right.\)
=> \(\Delta BMF\) \(\sim\)\(\Delta BCA\) (g-g)
=> \(\dfrac{MF}{AC}=\dfrac{BF}{BA}\)
=> MF = \(\dfrac{8.5,2}{6}\) = \(\dfrac{104}{15}\approx6,9\left(cm\right)\)
Vậy MF \(\approx6,9\left(cm\right)\)
c) \(x-\dfrac{10}{3}=\dfrac{7}{15}\cdot\dfrac{3}{5}\)
\(x-\dfrac{10}{3}=\dfrac{7}{25}\)
\(x=\dfrac{7}{25}+\dfrac{10}{3}\)
\(x=\dfrac{271}{75}\)
d) \(x+\dfrac{3}{22}=\dfrac{27}{121}\div\dfrac{9}{11}\)
\(x+\dfrac{3}{22}=\dfrac{3}{11}\)
\(x=\dfrac{3}{11}-\dfrac{3}{22}\)
\(x\) \(=\dfrac{3}{22}\)
e) \(\dfrac{8}{23}\div\dfrac{24}{46}-x=\dfrac{1}{3}\)
\(\dfrac{2}{3}-x=\dfrac{1}{3}\)
\(x=\dfrac{2}{3}-\dfrac{1}{3}\)
\(x=\dfrac{1}{3}\)
f) \(1-x=\dfrac{49}{65}\cdot\dfrac{5}{7}\)
\(1-x=\dfrac{7}{13}\)
\(x=1-\dfrac{7}{13}\)
\(x=\dfrac{6}{13}\)
H1: x = 360o - 130o - 60o - 82o = 88o
H2: x = 360o - 90o - 90o - 72o = 108o
H3: x = 360o - 90o - 115o - 70o = 85o
H4: 2x = 360o - 71o - 105o = 184o
=> x = 184o : 2 = 62o
Bài 2
a) 3x(x - 1) - 3(x - 1) = 0
(x - 1)(3x - 3) = 0
3(x - 1)(x - 1) = 0
3(x - 1)² = 0
x - 1 = 0
x = 1
b) x² - x = 0
x(x - 1) = 0
x = 0 hoặc x - 1 = 0
*) x - 1 = 0
x = 1
Vậy x = 0; x = 1
c) 25x² - 100x = 0
25x(x - 4) = 0
25x = 0 hoặc x - 4 = 0
*) 25x = 0
x = 0
*) x - 4 = 0
x = 4
Vậy x = 0; x = 4
d) (2x - 1)² - 64 = 0
(2x - 1 - 8)(2x - 1 + 8) = 0
(2x - 9)(2x + 7) = 0
*) 2x - 9 = 0
2x = 9
x = 9/2
*) 2x + 7 = 0
2x = -7
x = -7/2
Vậy x = -7/2; x = 9/2
Bài 1.2
1: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
2) Ta có: \(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}+1}{3-\sqrt{x}}-\dfrac{3-11\sqrt{x}}{x-9}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{3x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)