K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2021

H1: x = 360o - 130o - 60o - 82o = 88o

H2: x = 360o - 90o - 90o - 72o = 108o

H3: x = 360o - 90o - 115o - 70o = 85o

H4: 2x = 360o - 71o - 105o = 184o

=> x = 184o : 2 = 62o

5 tháng 9 2021

Cảm mơn bạn ạ ❤️

NV
5 tháng 1 2022

\(x^4-8x=x\left(x^3-8\right)=x\left(x-2\right)\left(x^2+2x+4\right)\)

\(x^2-y^2-6x+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x+y-3\right)\left(x-y-3\right)\)

5 tháng 1 2022

Cảm ơn bạn nha :>>

26 tháng 6 2021

undefined

Bài 1.2

1: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

2) Ta có: \(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}+1}{3-\sqrt{x}}-\dfrac{3-11\sqrt{x}}{x-9}\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{3x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)

24 tháng 6 2021

`c)-x^2+7x-2=-(x^2-7x)-2`

`=-(x^2-7x+49/4-49/4)-2`

`=-(x-7/2)^2+49/4-2`

`=-(x-7/2)^2+41/4<=41/4`

Dấu "=" xảy ra khi `x=7/2`

`d)-4x^2+8x-9=-(4x^2-8x)-9`

`=-(4x^2-8x+4-4)-9`

`=-(2x-2)^2-5<=-5`

Dấu "=" xảy ra khi `x=1`

`e)-3x^2+5x+10`

`=-3(x^2-5/3x)+10`

`=-3(x^2-5/3x+25/36-25/36)+10`

`=-3(x-5/6)^2+25/12+10`

`=-3(x-5/6)^2+145/12<=145/12`

Dấu "=" xảy ra khi`x=5/6`

1 tháng 7 2021

b. -x2-2x+15

= -(x-1)2+14

= 14-(x-1)2

Do (x-1)2 ≥0∀x nên 14-(x-1)2≤ 14

Dấu bằng xảy ra khi x=1

Vậy max=14 khi x=1

3 tháng 6 2021

a) Vì ABCD là hình bình hành ( gt )

⇒ AD // BC 

      F ∈ BC

⇒ AD // BF

⇒ ∠EDA = ∠EFB ( hai góc so le trong )

Xét △AED và △BEF, có :

∠EDA = ∠EFB ( cmt )

∠AED = ∠FEB ( hai góc đối đỉnh )

⇒ △AED ∼ △BEF (g-g)

b) Vì ABCD là hình bình hành ( gt )

⇒ AB // CD 

      E ∈ AB

⇒ BE // CD

Xét △FDC, có :

BE // CD ( cmt )

E ∈ DF ; B ∈ DC 

⇒ \(\dfrac{FB}{FC}=\dfrac{EB}{DC}\) (Hệ quả của định lí Ta-let)

⇒ \(\dfrac{BF}{BE}=\dfrac{FC}{DC}\) (1)

Vì △AED ∼ △BEF ( cmt )

⇒ \(\dfrac{AE}{BE}=\dfrac{AD}{BF}\) (TSDD)

⇒ \(\dfrac{AE}{AD}=\dfrac{BE}{BF}\) (2)

Từ (1) và (2) ⇒ \(\dfrac{AE}{AD}=\dfrac{CF}{CD}\)

⇒ AD.CD = AE.CF

c) Xét △DGC, có : 

AE // DC ( cmt )

G ∈ AC ; G ∈ DE

⇒ \(\dfrac{DG}{DE}=\dfrac{GC}{AC}\) (Hệ quả của định lí Ta-let) (3)

Xét △FGC, có : 

AD // CF ( cmt )

G ∈ AC ; G ∈ DF

⇒ \(\dfrac{DG}{DF}=\dfrac{AG}{AC}\) (Hệ quả của định lí Ta-let) (4)

Từ (3) và (4) ⇒ \(\dfrac{DG}{DE}+\dfrac{DG}{DF}=\dfrac{GC}{AC}+\dfrac{AG}{AC}\)

                     ⇒ \(\dfrac{DG}{DE}+\dfrac{DG}{DF}\)  =  1

                     ⇒  \(\dfrac{1}{DG}\left(\dfrac{DG}{DE}+\dfrac{DG}{DF}\right)=\dfrac{1}{DG}\)

                     ⇒  \(\dfrac{1}{DG}=\dfrac{1}{DE}+\dfrac{1}{DF}\)

                          

 

Câu 3: 

a: Ta có: \(2x\left(3x-1\right)-\left(x-3\right)\left(6x+2\right)\)

\(=6x^2-2x-6x^2-2x+18x+6\)

=14x+6

b: Ta có: \(2x\left(x+7\right)-3x\left(x+1\right)\)

\(=2x^2+14x-3x^2-3x\)

\(=-x^2+11x\)

Câu 2: 

a: Ta có: \(\left(-8x^5+12x^3-16x^2\right):4x^2\)

\(=-8x^5:4x^2+12x^3:4x^2-16x^2:4x^2\)

\(=-2x^3+3x-4\)

b: Ta có: \(\left(12x^3y^3-18x^2y+9xy^2\right):6xy\)

\(=12x^3y^3:6xy-18x^2y:6xy+9xy^2:6xy\)

\(=2x^2y^2-3x+\dfrac{3}{2}y\)

c: Ta có: \(\dfrac{x^3-11x^2+27x-9}{x-3}\)

\(=\dfrac{x^3-3x^2-8x^2+24x+3x-9}{x-3}\)

\(=x^2-8x+3\)

d: Ta có: \(\dfrac{6x^4-13x^3+7x^2-x-5}{3x+1}\)

\(=\dfrac{6x^4+2x^3-15x^3-5x^2+12x^2+4x-5x-\dfrac{5}{3}-\dfrac{10}{3}}{3x+1}\)

\(=2x^3-5x^2+4x-\dfrac{5}{3}-\dfrac{\dfrac{10}{3}}{3x+1}\)

 

1:

1C

2D

3A

4C

2:

1: Đ

2: S

7 tháng 5 2021

đề này bị thiếu dữ liệu thời gian rồi bạn nhé