K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2021

ta có: (a-b)2 = (a+b)2 - 4ab = 49 - 48 = 1 => a-b = \(\pm1\)

nhưng vì a<b nên a-b = -1

\(\left(a-b\right)^2=\left(a+b\right)^2-4ab=7^2-4\cdot12=1\)

nên a-b=-1

Bài 2:

Diện tích khu vườn là:

\(\left(14+x\right)\left(18-x\right)\)

\(=252-14x+18x-x^2\)

\(=-x^2+4x+252\)

\(=-\left(x^2-4x+4-256\right)\)

\(=-\left(x-2\right)^2+256\le256\forall x\)

Dấu '=' xảy ra khi x=2

Chu vi hình chữ nhật là:

\(C=2\left[14+x+18-x\right]=2\cdot32=64\left(cm\right)\)

5 tháng 9 2019

Bài 1:

\(a+b=15\)

\(\Rightarrow\left(a+b\right)^2=225\)

\(\Leftrightarrow a^2+2ab+b^2=225\)

\(\Leftrightarrow a^2+4+b^2=225\)

\(\Leftrightarrow a^2+b^2=221\)

Ta có: \(\left(a-b\right)^2=a^2-2ab+b^2\)

                               \(=221-4\)

                                \(217\)

Bài 2:

Vì \(x:7\)dư 6

\(\Rightarrow x\equiv-1\left(mod7\right)\)

\(\Rightarrow x^2\equiv1\left(mod7\right)\)

Vậy \(x^2:7\)dư 1

21 tháng 7 2021

( a − b ) 2=( a + b ) 2−4 a b

thay a+b = 7 và a.b=12 ta đc
\(\left(a-b\right)^2=\) 7^2-4x12=1

 

21 tháng 7 2021

Cái đề bài là mũ 2 nha

Vì a + c = 2016 -> a = 2016 - [ b + c] ; b = 2016 - [ a + c] ; c = 2016 - [ a - b]

Ta có: S = a/ b + c   +  b/ a + c   + c/a + b

S = 2016 - [ b + c] + 2016 - [ a + c] + 2016 - [ a + b]

S = 2016/ b + c - 1 + 2016/a + c - 1 + 2016/a + b

S = 2016.[ 1/b + c   + 1/a + c  + 1/a + b] - 3

S = 2016. 1/2016 - 3

S = - 2

18 tháng 12 2019

Từ \(a+b+c=2016\) và \(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=\frac{1}{2016}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=2016.\frac{1}{2016}\)

\(\Rightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{a+c}+\frac{a+b+c}{b+c}=1\)

\(\Rightarrow\frac{\left(a+b\right)+c}{a+b}+\frac{\left(a+c\right)+b}{a+c}+\frac{\left(b+c\right)+a}{b+c}=1\)

\(\Rightarrow1+\frac{c}{a+b}+1+\frac{b}{a+c}+1+\frac{a}{b+c}=1\)

\(\Rightarrow\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}=-2\)

hay \(P=-2\)

13 tháng 8 2018

+ Chứng minh (a + b)2 = (a – b)2 + 4ab

Ta có:

VP = (a – b)2 + 4ab = a2 – 2ab + b2 + 4ab

      = a2 + (4ab – 2ab) + b2

      = a2 + 2ab + b2

      = (a + b)2 = VT (đpcm)

+ Chứng minh (a – b)2 = (a + b)2 – 4ab

Ta có:

VP = (a + b)2 – 4ab = a2 + 2ab + b2 – 4ab

      = a2 + (2ab – 4ab) + b2

      = a2 – 2ab + b2

      = (a – b)2 = VT (đpcm)

+ Áp dụng, tính:

a) (a – b)2 = (a + b)2 – 4ab = 72 – 4.12 = 49 – 48 = 1

b) (a + b)2 = (a – b)2 + 4ab = 202 + 4.3 = 400 + 12 = 412.

8 tháng 12 2021
Ta có:a-b=10=> a*2 - 2ab +b*2=100 a*2+b*2=100+2ab=100-2.24=52 => a*2 + b*2 + 2ab = 52-2.24=4 (a+b)*2=4
24 tháng 6 2015

Tính ( a - b ) ^ 2, biết a + b = 7 và a . b = 12
Từ đề bài ta có:           ( a - b ) ^ 2 = ( a + b ) ^ 2 - 4ab
                               = ( a - b ) ^ 2 = 7 ^ 2 - 4 . 12
                               = ( a - b ) ^ 2 = 49 - 48
                               = ( a - b ) ^ 2 = 1
Vậy ( a - b ) ^ 2 với a + b = 7 và a . b = 12 bằng 1.

29 tháng 10 2019

\(a^2+b^2=\left(a+b\right)^2-2ab=7^2-24=25\)

\(\left(a-b\right)^2=\left(a+b\right)^2-4ab=7^2-4.12=1\)

\(\Rightarrow a-b=-1\)

\(\Rightarrow A=\left(-1\right)^5=?\)

\(B=\left(a^2+b^2\right)^2-2\left(ab\right)^2=25^2-2.12^2=?\)

24 tháng 10 2020

Phân tích 1 tí 

a + b = 11 > 0 

a . b = 30 > 0 

Suy ra a và b đều là số dương 

a + b = 11 

a = 11 - b 

a . b = 30 

( 11 - b ) . b = 30 

-b^2 + 11b - 30 = 0 

\(\orbr{\begin{cases}b=5\\b=6\end{cases}}\)   ( nhận ) 

\(b=5\Rightarrow a=6\left(n\right)\)   

\(b=6\Rightarrow a=5\left(l\right)\left(a>b\right)\)    

Vậy chỉ có a = 6 ; b = 5 thỏa điều kiện 

\(\left(a-b\right)^{2019}\)   

\(=\left(6-5\right)^{2019}\)   

\(=1^{2019}\)   

\(=1\)

 Vì a+b>0 và ab>0 nên a,b dương

Ta có\(a+b=11\Rightarrow\left(a+b\right)^2=11^2\Leftrightarrow a^2+2ab+b^2=121\)

\(\Rightarrow a^2+2ab+b^2-4ab=121-4ab\Leftrightarrow\left(a-b\right)^2=1\Rightarrow a-b=1\)(Do ab=1 và a,b dương và a>b)

\(\Rightarrow P=1^{2019}=1\)

           Vậy P=1