K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2021

Để \(f\left(x\right)>0\Rightarrow\Delta'>0\Rightarrow\left(m-2\right)^2-2\left(m^2+2\right)>0\Leftrightarrow m^2-4m+4-2m^2-4>\Leftrightarrow-m^2-4m>0\Leftrightarrow m^2+4m< 0\Leftrightarrow m\left(m+4\right)< 0\Leftrightarrow-4< m< 0\)

7 tháng 3 2021

để f(x)>0 với mọi x thì:

\(\left\{{}\begin{matrix}\Delta'< 0\\a>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)^2-2\left(m^2+2\right)< 0\\m^2+2>0\left(lđ\right)\end{matrix}\right.\)\(\Leftrightarrow m^2+4m>0\Leftrightarrow\left[{}\begin{matrix}m>0\\m< -4\end{matrix}\right.\)

12 tháng 3 2020

\(f\left(x\right)=x^2-2mx+m^2-3m+2\)

\(\Leftrightarrow f\left(x\right)=\left(x-m\right)^2-3m+2\)

Ta có : \(\left(x-m\right)^2\ge0\)

Để \(f\left(x\right)>0\)

\(\Leftrightarrow-3m+2>0\)

\(\Leftrightarrow m>-\frac{2}{3}\)

Vậy để \(f\left(x\right)>0\forall x\inℝ\Leftrightarrow m>-\frac{2}{3}\)

P/s : K biết có sai chỗ nào k ạ ? Check hộ e :)

12 tháng 3 2020

Bài vừa rồi mik làm sai nhé :(( Làm lại :

\(f\left(x\right)=x^2-2mx+m^2-3m+2\)

\(\Leftrightarrow f\left(x\right)=\left(x-m\right)^2-3m+2\)

Ta thấy : \(\left(x-m\right)^2\ge0\)

Để \(f\left(x\right)>0\)

\(\Leftrightarrow-3m+2>0\)

\(\Leftrightarrow2>3m\)

\(\Leftrightarrow m< \frac{2}{3}\)

Vậy để \(f\left(x\right)>0\forall x\inℝ\Leftrightarrow m< \frac{2}{3}\)

14 tháng 1 2024

\(f\left(x\right)>0\forall x\in R\)

\(\Rightarrow\left\{{}\begin{matrix}m^2+2>0\left(LĐ\right)\\\Delta'=\left[-\left(m-1\right)\right]^2-\left(m^2+2\right)\cdot1< 0\end{matrix}\right.\)

\(\Rightarrow m^2-2m+1-m^2-2< 0\)

\(\Leftrightarrow m>-\dfrac{1}{2}\)

Vậy: \(m>-\dfrac{1}{2}\).

10 tháng 3 2023

\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)

\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)

\(\Leftrightarrow-7m^2+38m-15< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(KL:m\in\left(5;+\infty\right)\)

18 tháng 3 2019

Để thỏa mãn BPT thì:

\(\left\{{}\begin{matrix}m-1>0\\\Delta< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>1\\\left[{}\begin{matrix}m>\sqrt{2}\\m< -\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

=> \(m>\sqrt{2}\)

18 tháng 3 2019

ơ bạn ơi xét a>0 vớiΔ<0 là thỏa mãn mọi x

còn chỉ lấy x>0 như nào😃😃

13 tháng 3 2019

1, BPT đúng với mọi x thuộc R khi vầ chỉ khi:

\(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a>0\\1-4a^2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\le\frac{-1}{2};a\ge\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow a\ge\frac{1}{2}\)

2, điều kiện: \(\Delta< 0\\ \Leftrightarrow\left(m+2\right)^2+8\left(m-4\right)< 0\\ \Leftrightarrow m^2+12m-28< 0\\ \Leftrightarrow-14< m< 2\)

3, điều kiện: \(\Delta'< 0\\ \Leftrightarrow\left(2m-3\right)^2-\left(4m-3\right)< 0\\ \Leftrightarrow m^2-4m+3< 0\\ \Leftrightarrow1< m< 3\)

4, Nếu m=0 => f(x)=-2x-1<0 (loại)

Nếu m≠0 để f(x)<0 với ∀x ϵ R khi và chỉ khi:

\(\left\{{}\begin{matrix}m< 0\\\Delta'< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\1+m< 0\end{matrix}\right.\)

\(\Rightarrow m< -1\)

2 tháng 12 2017

Chọn C