K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2023

\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)

\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)

\(\Leftrightarrow-7m^2+38m-15< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(KL:m\in\left(5;+\infty\right)\)

NV
10 tháng 3 2023

- Với \(m=0\Rightarrow f\left(x\right)=-4x-5>0\) khi \(x< -\dfrac{5}{4}\) (ktm)

- Với \(m\ne0\Rightarrow f\left(x\right)< 0;\forall x\) khi và chỉ khi:

\(\left\{{}\begin{matrix}m< 0\\\Delta'=4\left(m+1\right)^2-m\left(m-5\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\3m^2+13m+4< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-4< m< -\dfrac{1}{3}\end{matrix}\right.\)

\(\Rightarrow-4< m< -\dfrac{1}{3}\)

10 tháng 3 2023

\(f\left(x\right)>0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a>0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\left[-2\left(m-1\right)\right]^2-4\left(m+1\right)\left(-m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\4\left(m^2-2m+1\right)-4\left(-m^2+4m-m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow4m^2-8m+4+4m^2-12m-16< 0\)

\(\Leftrightarrow8m^2-20m-12< 0\)

\(KL:m\in\left(-1;3\right)\)

13 tháng 3 2019

1, BPT đúng với mọi x thuộc R khi vầ chỉ khi:

\(\left\{{}\begin{matrix}a>0\\\Delta\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a>0\\1-4a^2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a>0\\a\le\frac{-1}{2};a\ge\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow a\ge\frac{1}{2}\)

2, điều kiện: \(\Delta< 0\\ \Leftrightarrow\left(m+2\right)^2+8\left(m-4\right)< 0\\ \Leftrightarrow m^2+12m-28< 0\\ \Leftrightarrow-14< m< 2\)

3, điều kiện: \(\Delta'< 0\\ \Leftrightarrow\left(2m-3\right)^2-\left(4m-3\right)< 0\\ \Leftrightarrow m^2-4m+3< 0\\ \Leftrightarrow1< m< 3\)

4, Nếu m=0 => f(x)=-2x-1<0 (loại)

Nếu m≠0 để f(x)<0 với ∀x ϵ R khi và chỉ khi:

\(\left\{{}\begin{matrix}m< 0\\\Delta'< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\1+m< 0\end{matrix}\right.\)

\(\Rightarrow m< -1\)

13 tháng 3 2021

Đề còn thiếu kìa.

NV
19 tháng 1 2021

\(f\left(x\right)=\left(x+1\right)\left(x+2m-3\right)\)

\(f\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=-1< 1\\x=-2m+3\end{matrix}\right.\)

Để \(f\left(x\right)>0\) \(\forall x>1\Rightarrow-2m+3\le1\Leftrightarrow m>1\)

23 tháng 3 2022

f(x)=−2x2+(m+2)x+m−4≤0,∀x

⇔{a<0Δ<0

⇔{−2<0   ;  m2+12m−28<0

⇔−14<m<2

NV
23 tháng 3 2022

\(f\left(x\right)\le0;\forall x\in R\)

\(\Leftrightarrow\Delta=\left(m+2\right)^2+8\left(m-4\right)\le0\)

\(\Leftrightarrow m^2+12m-28\le0\)

\(\Rightarrow-14\le m\le2\)

AH
Akai Haruma
Giáo viên
22 tháng 7 2017

Lời giải:

Áp dụng định lý về dấu của tam thức bậc 2

\(f(x)=3x^2-6(2m+1)x+12m+5>0\) với mọi \(x\in \mathbb{R}\)

\(\Leftrightarrow \Delta'=9(2m+1)^2-3(12m+5)<0\)

\(\Leftrightarrow 36m^2-6<0\Leftrightarrow -\sqrt{\frac{1}{6}}< m<\sqrt{\frac{1}{6}}\)