Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
= \(\frac{1x1x1}{1x2x4}x\frac{2.2.1}{1.1.2.2}=\frac{1}{8}.1=\frac{1}{8}\)
=1X2X3/1X2X3X4X2= 1/8 =3X2X2X2X5/3X2X2X5X2= 1/1
=1/8X1/1=1/8
\(\dfrac{2}{1\times2\times3}+\dfrac{2}{2\times3\times4}+\dfrac{2}{3\times4\times5}+...+\dfrac{2}{48\times49\times50}\)
\(=\dfrac{1}{1\times2}-\dfrac{1}{2\times3}+\dfrac{1}{2\times3}-\dfrac{1}{3\times4}+\dfrac{1}{3\times4}-\dfrac{1}{4\times5}+...+\dfrac{1}{48\times49}-\dfrac{1}{49\times50}\)
\(=\dfrac{1}{1\times2}-\dfrac{1}{49\times50}\)
\(=\dfrac{1}{2}-\dfrac{1}{2450}\)
\(=\dfrac{612}{1225}\)
\(\text{#}Toru\)
( 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 +1/5.6 ) x 10 - x = 0
= ( 1- 1/2 +1/2 -1/3 +1/3 - 1/4 + 1/4 - 1/5 +1/5 -1/6 ) x 10 - x = 0
= ( 1 - 1/6 ) x 10 - x = 0
= 5/6 x 10 - x =0
= 25/3 - x =0
x = 25/3 - 0
x = 25/3
\(\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}\right)\times10-x=0\)
\(\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\right)\times10-x=0\)
\(\left(\frac{1}{1}-\frac{1}{6}\right)\times10-x=0\)
\(\frac{5}{6}\times10-x=0\)
\(\frac{25}{3}-x=0\)
x =\(\frac{25}{3}-0=\frac{25}{3}\)
Vì có số 10;20;...;1000 nên cs tận cùng là chữ số 0
Theo đề bài ta sẽ thấy:
Các số có hàng đơn vị là 0 nhân với số nào cũng sẽ ra số mới có đơn vị là 0.
Số 5;15;25;...... nhân với số chẵn nào cũng ra số mới có hàng đơn vị là 0.
=>Tích sau tận cùng là chữ số 0.
C = \(\frac{3}{2.3.4}+\frac{3}{3.4.5}+.....+\frac{3}{98.99.100}\)
C = \(3.\left(\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\right)\)
C = \(3.\frac{1}{2}.\left(\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)
C = \(\frac{3}{2}.\left(\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{100-98}{98.99.100}\right)\)
C = \(\frac{3}{2}.\left(\frac{4}{2.3.4}-\frac{2}{2.3.4}+\frac{5}{3.4.5}-\frac{3}{3.4.5}+...+\frac{100}{98.99.100}-\frac{99}{98.99.100}\right)\)
C = \(\frac{3}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
C = \(\frac{3}{2}.\left(\frac{1}{2.3}-\frac{1}{99.100}\right)\)
C = \(\frac{3}{2}.\frac{1649}{9900}\)
C = \(\frac{1649}{6600}\)
Đặt A = 1 x 2 + 2 x 3 + ... + 2011 x 2012
3A = 1 x 2 x 3 + 2 x 3 x 3 + ... + 2010 x 2011 x 3 + 2011 x 2012 x 3
3A = 1 x 2 x 3 + 2 x 3 x (4 - 1) + ... + 2010 x 2011 x (2012 - 2009) + 2011 x 2012 x (2013 - 2010)
3A = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + ... + 2010 x 2011 x 2012 - 2009 x 2010 x 2011 + 2011 x 2012 x 2013 - 2010 x 2011 x 2012
3A = 2011 x 2012 x 2013
3A = 8 144 863 176
A = 2 714 954 572