K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2020

Xin lỗi, mình chỉ làm được câu 1 thôi

\(A=\frac{1}{7}\left(\frac{555}{222}+\frac{4444}{12221}+\frac{33333}{244442}+\frac{11}{330}+\frac{13}{60}\right)\)

\(A=\frac{1}{7}\left(\frac{5.111}{2.111}+\frac{4.1111}{11.1111}+\frac{3.11111}{22.11111}+\frac{11}{11.30}+\frac{13}{60}\right)\)

\(A=\frac{1}{7}\left(\frac{5}{2}+\frac{4}{11}+\frac{3}{22}+\frac{1}{30}+\frac{13}{60}\right)\)

\(A=\frac{1}{7}\left[\left(\frac{5}{2 }+\frac{1}{30}+\frac{13}{60}\right)+\left(\frac{4}{11}+\frac{3}{22}\right)\right]\)

\(A=\frac{1}{7}\left[\left(\frac{150}{60}+\frac{2}{60}+\frac{13}{60}\right)+\left(\frac{8}{22}+\frac{3}{22}\right)\right]\)

\(A=\frac{1}{7}\left(\frac{11}{4}+\frac{1}{2}\right)\)

\(A=\frac{1}{7}.\frac{13}{4}\)

\(A=\frac{13}{21}\)

14 tháng 7 2017

\(F=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)

\(F=\left(\frac{1}{2}+\frac{1}{2^3}+....+\frac{1}{2^{99}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\right)\)

\(F=\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\right)-2.\left(\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\right)\)

\(F=\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{50}}\right)\)

\(F=\frac{1}{2^{51}}+\frac{1}{2^{52}}+...+\frac{1}{2^{100}}\)

14 tháng 7 2017

\(E=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(2E=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(2E-E=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(E=1-\frac{1}{2^{100}}\)

15 tháng 5 2015

\(\frac{E}{F}=\frac{5}{2}\) Chỉ nhớ kết quả thôi Hoàng Minh Đ.... à !

13 tháng 4 2017

bạn có viết sai đề k

13 tháng 4 2017

đợi nhé, mai mình làm

25 tháng 1 2017

\(A=\frac{1}{10\times11}+\frac{1}{11\times12}+...+\frac{1}{99\times100}\)

\(A=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{10}-\frac{1}{100}\)

\(A=\frac{9}{100}\)

25 tháng 1 2017

\(A=\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{99.100}\)

\(=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{10}-\frac{1}{100}\)

\(=\frac{9}{100}\)

5 tháng 7 2017

\(E=\frac{1}{25\cdot27}+\frac{1}{27\cdot29}+...+\frac{1}{73\cdot75}\)

\(E=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+...+\frac{1}{73}-\frac{1}{75}\right)\)

\(\Rightarrow E=\frac{1}{2}\left(\frac{1}{25}-\frac{1}{75}\right)=\frac{1}{2}\cdot\frac{2}{75}=\frac{1}{75}\)

\(F=\frac{15}{90\cdot94}+\frac{15}{94\cdot98}+...+\frac{15}{146\cdot150}\)

\(F=\frac{15}{4}\cdot\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+...+\frac{1}{146}-\frac{1}{150}\right)\)

\(\Rightarrow F=\frac{15}{4}\cdot\left(\frac{1}{90}-\frac{1}{150}\right)=\frac{15}{4}\cdot\frac{1}{225}=\frac{1}{60}\)

\(G=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)

\(G=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)

\(G=\frac{5}{4\cdot7}+\frac{5}{7\cdot10}+\frac{5}{10\cdot13}+...+\frac{5}{25\cdot28}\)

\(G=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)

\(\Rightarrow G=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{28}\right)=\frac{5}{3}\cdot\frac{3}{14}=\frac{5}{14}\)

5 tháng 7 2017

sao nhiều vậy bạn