K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2017

\(A=\frac{1}{10\times11}+\frac{1}{11\times12}+...+\frac{1}{99\times100}\)

\(A=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{10}-\frac{1}{100}\)

\(A=\frac{9}{100}\)

25 tháng 1 2017

\(A=\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{99.100}\)

\(=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{10}-\frac{1}{100}\)

\(=\frac{9}{100}\)

25 tháng 8 2020

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

25 tháng 8 2020

\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

18 tháng 8 2020

a) \(-\frac{8}{18}-\frac{15}{27}=-\frac{4}{9}-\frac{5}{9}=\frac{-9}{9}=-1\)

b) \(\frac{19}{24}-\left(-\frac{1}{2}+\frac{7}{24}\right)\)

\(=\frac{19}{24}+\frac{12}{24}-\frac{7}{24}=\frac{24}{24}=1\)

c) \(P=\frac{3^{11}.11+3^{11}.21}{3^9.2^5}\)

\(P=\frac{3^{11}.\left(11+21\right)}{2^9.2^5}=\frac{3^{11}.32}{2^9.32}=3^2=9\)

d) \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)

\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=2\left(1-\frac{1}{100}\right)\)

\(=2.\frac{99}{100}=\frac{99}{50}\)

31 tháng 7 2015

                                  

31 tháng 7 2015

\(a=\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)

\(a=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(a=1-\frac{1}{100}=\frac{100-1}{100}=\frac{99}{100}\)

Vậy \(a=\frac{99}{100}\)

14 tháng 3 2016

Mk nghĩ A>2

27 tháng 7 2021

Ta có : \(\frac{\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}}{\frac{6}{5}+\frac{6}{7}-\frac{2}{3}+\frac{6}{11}}=\frac{\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}}{2\left(\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}\right)}=\frac{1}{2}\)

Lại có : \(\frac{\left(\frac{1}{4}-\frac{1}{5}-\frac{1}{20}\right).2021}{\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}}=\frac{0.2021}{\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}}=0\)

Khi đó \(B=\frac{1}{2}+0=\frac{1}{2}\)

17 tháng 3 2016

Ta có: 

\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)

\(=\frac{1}{2}.\frac{4}{6}.\frac{9}{12}....\frac{9801}{9900}.\frac{10000}{10100}\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}.\frac{100}{101}=\frac{1.2.3...99.100}{2.3.4...100.101}=\frac{1}{101}\)(Tối giản)

3 tháng 4 2015

Câu A

Ta có (1/2)A  = 1/22 + 1/23 + ... + 1/2100 + 1/2101

=> (1/2)A - A = - (1/2)A = (1/22 + 1/23 + ... + 1/2100 + 1/2101) - (1/2 + 1/22 + ... + 1/2100 )

                                   = 1/2101 - 1/2

=> A = 1 - 1/2100

Câu B

Ta có 1/(1x2) = 1/1 - 1/2

         1/(2.3) = 1/2 - 1/3

  .................................

        1/(99.100) = 1/99 - 1/100

=> B = 1/1 - 1/2 + 1/2 - 1/3 +.... +1/99 - 1/100

        = 1 - 1/100

        =99/100