Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f,\dfrac{x^2-6x+9}{x^2-8x+15}\\ =\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x-5\right)}\\ =\dfrac{x-3}{x-5}\\ l,\dfrac{5xy+5x+3+3y}{10xy-15x-9+6y}\\ =\dfrac{5x\left(y+1\right)+3\left(y+1\right)}{5x\left(2y-3\right)+3\left(2y-3\right)}\\ =\dfrac{\left(y+1\right)\left(5x+3\right)}{\left(2y-3\right)\left(5y+3\right)}\\ =\dfrac{y+1}{2y-3}\)
b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)
\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)
\(=\dfrac{2y^2+8y+12}{y-1}\)
a) Ta có: \(\dfrac{1-x}{x^2-2x+1}+\dfrac{x+1}{x-1}\)
\(=\dfrac{1-x}{\left(x-1\right)^2}-\dfrac{x+1}{1-x}\)
\(=\dfrac{1-x}{\left(1-x\right)^2}-\dfrac{x+1}{1-x}\)
\(=\dfrac{1-x-1}{1-x}=\dfrac{-x}{1-x}=\dfrac{x}{x-1}\)
b) Ta có: \(\dfrac{2x}{3y^4z}\cdot\left(-\dfrac{4y^2z}{5x}\right)\cdot\left(-\dfrac{15y^3}{8xz}\right)\)
\(=\dfrac{2x\cdot4y^2z\cdot15y^3}{3y^4z\cdot5x\cdot8xz}\)
\(=\dfrac{120xy^5z}{120x^2y^4z^2}=\dfrac{y}{xz}\)
a/ \(\dfrac{3x^2y+5}{15x^3y^4}+\dfrac{3x^2y-5}{15x^3y^4}=\dfrac{3x^2y+5+3x^2y-5}{15x^3y^4}=\dfrac{6x^2y}{15x^3y^4}=\dfrac{2}{5xy^3}\)
b/ \(\dfrac{2x^2-x}{x^2+x+1}+\dfrac{x^3-2x^2+x+1}{x^2+x+1}=\dfrac{2x^2-x+x^3-2x^2+x+1}{x^2+x+1}=\dfrac{x^3+1}{x^2+x+1}\)
\(=\dfrac{30\left(x^3-y^3\right)\left(x^2-y^2\right)}{3\left(x+y\right)\left(x^2+xy+y^2\right)}=\dfrac{10\left(x-y\right)^2\left(x+y\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)\left(x^2+xy+y^2\right)}=10\left(x-y\right)^2\)
\(VT=\dfrac{x^2}{x^2+2xy+3zx}+\dfrac{y^2}{y^2+2yz+3xy}+\dfrac{z^2}{z^2+2zx+3yz}\)
\(VT\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+5xy+5yz+5zx}=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+3\left(xy+yz+zx\right)}\ge\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(x+y+z\right)^2}=\dfrac{1}{2}\)
\(=-\dfrac{2}{15xy^2}\)
\(=-\dfrac{3y}{5x^4z^3}\)