Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1
a) xy(x+y)-yz(y+z)+zx[(x+y)-(y+z)]=xy(x+y)+zx(x+y)-yz(y+z)-zx(y+z)=x(x+y)(y+z)-z(y+z)(y+x)=(x+y)(y+z)(x-z)
b) \(\frac{x-y}{\left(z-x\right)\left(z-y\right)}+\frac{y-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-x}{\left(y-z\right)\left(y-x\right)}=2022\)
\(\Leftrightarrow\frac{x-z+z-y}{\left(z-x\right)\left(z-y\right)}+\frac{y-z+x-z}{\left(x-y\right)\left(x-z\right)}+\frac{z-y+y-x}{\left(y-z\right)\left(y-x\right)}=2022\)
\(\Leftrightarrow\frac{-1}{z-y}+\frac{-1}{z-x}+\frac{-1}{x-z}+\frac{-1}{x-y}+\frac{-1}{x-y}+\frac{-1}{y-z}+\frac{1}{y-z}=2022\)
\(\Leftrightarrow2\left(\frac{1}{x-y}+\frac{1}{y-z}+\frac{1}{z-x}\right)=2022\)
\(\Leftrightarrow\frac{1}{x-y}+\frac{1}{y-z}+\frac{1}{z-x}=1011\)
Câu 8: bạn sửa lại đề: AB<AC
a) Xét tam giác AHB và tam giác AEP có:
\(\widehat{AHB}=\widehat{AEP}=90^0\)
AH=KE (Tứ giác AHKE là hình vuông)
\(\widehat{HAB}=\widehat{AEP}\)(cùng phụ với \(\widehat{HAC}\))
\(\Rightarrow\Delta AHB=\Delta AEP\)(g-c-g)
=> AB=AP (2 cạnh tương ứng) => \(\Delta\)BAP cân tại A
b) Tứ giác ABQP là hình vuông nên IA=IB=IQ=IP (1)
Tam giác BKP vuông tại K nên KP=KB=KI (2)
Từ (1) và (2) suy ra: AI=KI nên I là đường trung trực của AK (3)
Vì AHKE là hình vuông nên HE là trung trực của AK (4)
Từ (3) và (4) suy ra: H;I:E cùng thuộc đường trung trực của AK hay H;I:E thằng hàng (đpcm)
Câu 9: Có \(\widehat{CEA}=\widehat{B}+\widehat{BAE}=\widehat{HAC}+\widehat{EAH}=\widehat{CAE}\)
\(\Rightarrow\Delta CAE\)cân tại C => CA=CE (1)
Qua H kẻ đường thằng song song với AB cắt MF ở K. Ta có \(\frac{BE}{EH}=\frac{MB}{KH}=\frac{MA}{KH}=\frac{FA}{FH}\left(2\right)\)
AE là phân giác của tam giác ABH nên \(\frac{BE}{EH}=\frac{AB}{AH}\left(3\right)\)
\(\Delta CAH\)và \(\Delta CBA\)đồng dạng \(\Rightarrow\frac{AB}{AH}=\frac{CA}{CH}=\frac{CE}{CH}\)(theo (1)) (4)
Từ (2);(3) và (4) => \(\frac{FA}{FH}=\frac{CE}{CH}\)hay \(\frac{AE}{FH}=\frac{CE}{CH}\)=> CF//AE (đpcm)
Câu 10:
Chia các đỉnh của tam giác thành 3 nhóm \(\left\{A_1;A_4;A_7;A_{10}\right\};\left\{A_2;A_5;A_8;A_{11}\right\};\left\{A_3;A_6;A_9;A_{12}\right\}\)
Chọn 3 đỉnh liên tiếp thì mỗi đỉnh vào 1 nhóm
Do vậy số dấu "-" trong mỗi nhóm là +1 hoặc -1
Mà nhóm II và nhóm III cùng tính chẵn lẻ về số dấu "-"
Khi bắt đầu nhóm II, nhóm III số dấu "-" bằng 0. Nếu đỉnh A2 mang dấu "-" các đỉnh còn lại mang dấu "+" thì nhóm II, nhóm III khác đỉnh chẵn lẻ về số dấu "=". Mâu thuẫn!
P.s bài trình bày khó hiểu, bạn thông cảm! :)
\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)
Cần cách khác thì nhắn cái
Câu 1:
Ta thấy \(S_2=\dfrac{\sqrt{3}+S_1}{1-\sqrt{3}S_1}=\dfrac{\sqrt{3}+1}{1-\sqrt{3}}=\dfrac{\left(1+\sqrt{3}\right)^2}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}\)\(=\dfrac{4+2\sqrt{3}}{-2}=-2-\sqrt{3}\)
Từ đó \(S_3=\dfrac{\sqrt{3}+S_2}{1-\sqrt{3}S_2}=\dfrac{\sqrt{3}-2-\sqrt{3}}{1-\sqrt{3}\left(-2-\sqrt{3}\right)}=\dfrac{-2}{4+2\sqrt{3}}=\dfrac{1}{-2-\sqrt{3}}\)
và \(S_4=\dfrac{\sqrt{3}+S_3}{1-\sqrt{3}S_3}=\dfrac{\sqrt{3}+\dfrac{1}{-2-\sqrt{3}}}{1-\dfrac{\sqrt{3}}{-2-\sqrt{3}}}=\dfrac{-2\sqrt{3}-3+1}{-2-\sqrt{3}-\sqrt{3}}=1\)
Đến đây ta thấy \(S_4=S_1\). Cứ tiếp tục làm như trên, ta rút ra được:
\(S_{3k+1}=1\); \(S_{3k+2}=-2-\sqrt{3}\) và \(S_{3k+3}=\dfrac{1}{-2-\sqrt{3}}\), với \(k\inℕ\)
Ta tính số các số thuộc mỗi dạng \(S_{3k+i}\left(i=1,2,3\right)\) từ \(S_1\) đến \(S_{2017}\).
- Số các số hạng có dạng \(S_{3k+1}\) là \(\left(2017-1\right):3+1=673\) số
- Số các số hạng có dạng \(S_{3k+2}\) là \(\left(2015-2\right):3+1=672\) số
- Số các số hạng có dạng \(S_{3k+3}\) là \(\left(2016-3\right):3+1=672\) số
Như thế, tổng S có thể được viết lại thành
\(S=\left(S_1+S_4+...+S_{2017}\right)+\left(S_2+S_5+...+S_{2015}\right)+\left(S_3+S_6+...+S_{2016}\right)\)
\(S=613+612\left(-2-\sqrt{3}\right)+612\left(\dfrac{1}{-2-\sqrt{3}}\right)\)
Tới đây mình lười rút gọn lắm, nhưng ý tưởng làm bài này là như vậy.
Có \(\left(x-\sqrt{x^2+5}\right).\left(y-\sqrt{y^2+5}\right)=5\) (1)
\(\Leftrightarrow\dfrac{\left(x-\sqrt{x^2+5}\right).\left(x+\sqrt{x^2+5}\right)}{x+\sqrt{x^2+5}}.\dfrac{\left(y-\sqrt{y^2+5}\right).\left(y+\sqrt{y^2+5}\right)}{y+\sqrt{y^2+5}}=5\)
\(\Leftrightarrow\left(x+\sqrt{x^2+5}\right).\left(y+\sqrt{y^2+5}\right)=5\) (2)
Từ (1) và (2) ta có \(\left(x-\sqrt{x^2+5}\right).\left(y-\sqrt{y^2+5}\right)=\left(x+\sqrt{x^2+5}\right).\left(y+\sqrt{y^2+5}\right)\)
\(\Leftrightarrow x\sqrt{y^2+5}+y\sqrt{x^2+5}=0\)
\(\Leftrightarrow x^2\left(y^2+5\right)=y^2\left(x^2+5\right)\left(y\le0;x\ge0\right)\)
\(\Leftrightarrow x^2-y^2=0\Leftrightarrow\left[{}\begin{matrix}x=y\left(\text{loại}\right)\\x=-y\left(\text{nhận}\right)\end{matrix}\right.\)
Khi đó M = x3 + y3 = 0
N = x2 + y2 = 2y2
\(\left(n^2-8\right)^2+36\)
\(=n^4-16n^2+64+36\)
\(=\left(n^4+20n^2+100\right)-36n^2\)
\(=\left(n^2+10\right)^2-\left(6n\right)^2\)
\(=\left(n^2+10-6n\right)\left(n^2+10+6n\right)\)
Để n là số nguyên tố thì \(\orbr{\begin{cases}n^2+10-6n=1\\n^2+10+6n=1\end{cases}}\)
Mà do \(n\in N\Rightarrow n^2+10-6n=1\)
\(\Leftrightarrow n^2-6n+9=0\)
\(\Leftrightarrow\left(n-3\right)^2=0\)
\(\Leftrightarrow n-3=0\)
\(\Leftrightarrow n=3\)
Vậy n=3.
\(C1:\)\(S\)\(=225\)\(cm^2\)\(\Leftrightarrow\)\(S=\left(4x-1\right)^2\)
\(\Rightarrow\left(4x-1\right)^2=225\)
\(\Rightarrow\left(4x-1\right)^2=15^2\Rightarrow4x-1=15\)
\(\Rightarrow4x=16\)
\(\Rightarrow x=4\)
a) ta có: \(|4x^2-1|\ge0\forall x\)
\(|2x-1|\ge0\forall x\Leftrightarrow3x|2x-1|\ge0\forall x\)
Mà \(|4x^2-1|+3x|2x-1|=0\)
=> I4x^2-1I và 3xI2x-1I=0
=> 4x^2-1=0 và 3x=0 hoặc 2x-1=0
=> 4x^2=1 và x=0 hoặc 2x=1
=> x^2=1/4 và x=0 hoặc x=1/2
=> x=\(\pm\frac{1}{2}\)và x=0 hoặc x=1/2
Vậy x=\(\pm\frac{1}{2}\); x=0
Bài 3.a) ( x + 2)( x + 3)( x + 4)(x + 5) = 24
⇔ ( x2 + 7x + 10 )( x2 + 7x + 12) = 24
Đặt : x2 + 7x + 11 = t , ta có :
( t - 1)( t + 1) = 24
⇔ t2 - 25 = 0
⇔ t = 5 hoặc t = -5
+) Với : t = 5 , ta có :
x2 + 7x + 11 = 5
⇔ x2 + x + 6x + 6 = 0
⇔ x( x + 1) + 6( x + 1) = 0
⇔ ( x + 1)( x + 6) = 0
⇔ x = -1 hoặc x = - 6
+) x2 + 7x + 11 = - 5
⇔ x2 + 7x + 16 = 0
Ta thấy : x2 + 2.\(\dfrac{7}{2}x+\dfrac{49}{4}+16-\dfrac{49}{4}=\left(x+\dfrac{7}{x}\right)^2+\dfrac{15}{4}>0\)
⇒ Phương trình vô nghiệm
KL.......
b) ( 4x + 1)( 12x - 1)( 3x + 2)( x + 1) = 4
⇔ 3( 4x + 1)( 12x - 1)4( 3x + 2)12( x + 1) = 4.4.3.12
⇔ ( 12x + 3)( 12x - 1)( 12x + 8)( 12x + 12) = 576
⇔ ( 144x2 + 132x + 24)( 144x2 + + 132x - 12) = 576
Đặt : 144x2 + 132x + 24 = t , ta có :
t( t - 36) = 576
⇔ t2 - 36t - 576 = 0
⇔ t2 + 12t - 48t - 576 = 0
⇔ t( t + 12) - 48( t + 12) = 0
⇔ ( t + 12)( t - 48) = 0
Đến đây dễ rùi , bạn tự giải ra nhé.
3) Phương trình tương đương
\(\left(8x-4y-15\right)^2+7\left(4y+3\right)^2=112=49+7.9\)
Xét các phương trình tìm được cặp nghiệm x=1;y=0
wtf, nhầm box à