K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2023

1: \(A=\sqrt{\dfrac{2}{3}}-\sqrt{24}+2\cdot\sqrt{\dfrac{3}{8}}+\sqrt{\dfrac{1}{6}}\)

\(=\sqrt{\dfrac{6}{9}}-2\sqrt{6}+2\cdot\sqrt{\dfrac{6}{16}}+\sqrt{\dfrac{6}{36}}\)

\(=\dfrac{1}{3}\sqrt{6}-2\sqrt{6}+\dfrac{1}{2}\sqrt{6}+\dfrac{1}{6}\sqrt{6}\)

\(=-\sqrt{6}\)

2: \(A=\sqrt{150}+\sqrt{96}+\dfrac{9}{2}\cdot\sqrt{2\dfrac{2}{3}}-\sqrt{6}\)

\(=5\sqrt{6}+4\sqrt{6}+\dfrac{9}{2}\cdot\sqrt{\dfrac{8}{3}}-\sqrt{6}\)

\(=8\sqrt{6}+\dfrac{9}{2}\cdot\dfrac{2\sqrt{2}}{\sqrt{3}}\)

\(=8\sqrt{6}+3\sqrt{3}\cdot\sqrt{2}=11\sqrt{6}\)

3: \(A=2\sqrt{45}+\sqrt{32}-2\sqrt{20}-\dfrac{9}{2}\cdot\sqrt{8}\)

\(=2\cdot3\sqrt{5}+4\sqrt{2}-2\cdot2\sqrt{5}-\dfrac{9}{2}\cdot2\sqrt{2}\)

\(=6\sqrt{5}-4\sqrt{5}+4\sqrt{2}-9\sqrt{2}\)

\(=2\sqrt{5}-5\sqrt{2}\)

4: \(A=\sqrt{75}-\dfrac{1}{2}\cdot\sqrt{48}+\sqrt{300}-\sqrt{147}\)

\(=5\sqrt{3}-\dfrac{1}{2}\cdot4\sqrt{3}+10\sqrt{3}-7\sqrt{3}\)

\(=8\sqrt{3}-2\sqrt{3}=6\sqrt{3}\)

5: \(A=\sqrt{54}+2\sqrt{24}-\dfrac{3}{2}\cdot\sqrt{96}-\sqrt{216}\)

\(=3\sqrt{6}+2\cdot2\sqrt{6}-6\sqrt{6}-\dfrac{3}{2}\cdot4\sqrt{6}\)

\(=-3\sqrt{6}+4\sqrt{6}-6\sqrt{6}\)

\(=-5\sqrt{6}\)

6: \(A=3\sqrt{50}-2\sqrt{75}-4\cdot\dfrac{\sqrt{54}}{\sqrt{3}}-3\sqrt{\dfrac{1}{3}}\)

\(=3\cdot5\sqrt{2}-2\cdot5\sqrt{3}-4\cdot\sqrt{18}-\sqrt{3}\)

\(=15\sqrt{2}-10\sqrt{3}-12\sqrt{2}-\sqrt{3}\)

\(=3\sqrt{2}-11\sqrt{3}\)

15 tháng 11 2023

10: \(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\)

\(=\left(\sqrt{3-\sqrt{5}}\right)^2+\left(\sqrt{3+\sqrt{5}}\right)^2+2\cdot\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)

\(=3-\sqrt{5}+3+\sqrt{5}+2\cdot\sqrt{9-5}\)

\(=6+2\cdot2=10\)

11: \(\left(\sqrt{\sqrt{7}+\sqrt{3}}+\sqrt{\sqrt{7}-\sqrt{3}}\right)^2\)

\(=\left(\sqrt{\sqrt{7}+\sqrt{3}}\right)^2+\left(\sqrt{\sqrt{7}-\sqrt{3}}\right)^2+2\cdot\sqrt{\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}\)

\(=\sqrt{7}+\sqrt{3}+\sqrt{7}-\sqrt{3}+2\cdot\sqrt{7-3}\)

\(=2\sqrt{7}+2\cdot2=2\sqrt{7}+4\)

12: \(\left(\sqrt{\sqrt{11}+\sqrt{7}}-\sqrt{\sqrt{11}-\sqrt{7}}\right)^2\)

\(=\left(\sqrt{\sqrt{11}+\sqrt{7}}\right)^2+\left(\sqrt{\sqrt{11}-\sqrt{7}}\right)^2-2\cdot\sqrt{\left(\sqrt{11}-\sqrt{7}\right)\left(\sqrt{11}+\sqrt{7}\right)}\)

\(=\sqrt{11}+\sqrt{7}+\sqrt{11}-\sqrt{7}-2\cdot\sqrt{11-7}\)

\(=2\sqrt{11}-4\)

13:

\(\sqrt{\sqrt{2}-1}\cdot\sqrt{2-\sqrt{3-\sqrt{2}}}\cdot\sqrt{2+\sqrt{3-\sqrt{2}}}\)

\(=\sqrt{\sqrt{2}-1}\cdot\sqrt{4-\left(3-\sqrt{2}\right)}\)

\(=\sqrt{\sqrt{2}-1}\cdot\sqrt{\sqrt{2}+1}\)

\(=\sqrt{2-1}=1\)

14:

\(\sqrt{4+\sqrt{8}}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2}}}\)

\(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{\left(2+\sqrt{2+\sqrt{2}}\right)\left(2-\sqrt{2+\sqrt{2}}\right)}\)

\(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{4-2-\sqrt{2}}\)

\(=\sqrt{\left(4+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}\)

\(=\sqrt{8-4\sqrt{2}+4\sqrt{2}-4}=\sqrt{4}=2\)

15 tháng 3 2022

Ta có \(\dfrac{a^3}{a^2+b^2}=a-\dfrac{ab^2}{a^2+b^2}\ge a-\dfrac{ab^2}{2ab}=a-\dfrac{b}{2}=\dfrac{2a-b}{2}\)(áp dụng cosi cho \(a^2+b^2\ge2ab\))

\(\dfrac{b^3}{b^2+1}=b-\dfrac{b}{b^2+1}\ge b-\dfrac{b}{2b}=b-\dfrac{1}{2}=\dfrac{2b-1}{2}\)(áp dụng cosi cho\(b^2+1\ge2b\))

\(\dfrac{1}{a^2+1}=1-\dfrac{a^2}{a^2+1}\ge1-\dfrac{a^2}{2a}=1-\dfrac{a}{2}=\dfrac{2-a}{2}\)( áp dụng cosi cho \(a^2+1\ge2a\))

Cộng vế theo vế 

\(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+1}+\dfrac{1}{a^2+1}\ge\dfrac{2a-b+2b-1+2-a}{2}\)\(\ge\dfrac{a+b+1}{2}\left(đpcm\right)\)

Dấu "=" xảy ra <=> a=b=1

15 tháng 3 2022

undefined

10 tháng 3 2019

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

10 tháng 3 2019

bn nhớ học lại nội qui tham gia " giúp tôi giải toán" nha

25 tháng 5 2022

undefined

31 tháng 1 2023

sửa lại nhé

\(\left\{{}\begin{matrix}3\left(x-y\right)-y=11\\x-2\left(x+5y\right)=-15\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}3x-3y-y=11\\x-2x-10y=-15\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}3x-4y=11\\-x-10y=-15\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}x=5\\y=1\end{matrix}\right.\)

31 tháng 1 2023

\(\Leftrightarrow\left\{{}\begin{matrix}3x-3y-y=11\\x-2x-10y=-15\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-4y=11\\-x-10y=-15\left(1\right)\end{matrix}\right.\)

Nhân \(-3\) vào \(\left(1\right)\)

\(\left\{{}\begin{matrix}3x-4y=11\left(2\right)\\3x+30y=45\left(3\right)\end{matrix}\right.\)

Lấy \(\left(2\right)-\left(3\right)\) :

\(\Leftrightarrow3x-3x-4y-30y=11-45\)

\(\Leftrightarrow-34y=-34\)

\(\Leftrightarrow x=1\)

Lấy \(x=1\) thay vào \(\left(2\right)\) : \(3.1-4y=11\Leftrightarrow y=2\)

Vậy hệ pt có nghiệm duy nhất \(\left(x;y\right)=\left(1;2\right)\)

c: Xét ΔHDK vuông tại H và ΔHIB vuông tại H có

góc HDK=góc HIB

=>ΔHDK đồng dạng với ΔHIB

=>HD/HI=HK/HB

=>HD*HB=HI*HK=AH^2

23 tháng 1 2019

k tui trước đi ròi tui k lại cho!

VERY  GOOD!!!

21 tháng 1 2017

Hôm qua mình kết rồi đó!!!

21 tháng 1 2017

Quy định của Onlinemath là ko được đưa những câu hỏi liên quan đến Toán, bạn muốn kết bn thì tự kết đi, việc gì phải đăng lên

1: \(=\left[\left(\sqrt{2}+\sqrt{3}\right)^2-5\right]\cdot\left[\left(\sqrt{5}\right)^2-\left(\sqrt{2}-\sqrt{3}\right)^2\right]\)

\(=2\sqrt{6}\left(5-5+2\sqrt{6}\right)=2\sqrt{6}\cdot2\sqrt{6}=24\)

2: \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

=>\(A^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\cdot\sqrt{16-10-2\sqrt{5}}\)

\(=8+2\cdot\sqrt{6-2\sqrt{5}}\)

\(=8+2\left(\sqrt{5}-1\right)=6+2\sqrt{5}\)

=>\(A=\sqrt{5}+1\)