Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\dfrac{a^3}{a^2+b^2}=a-\dfrac{ab^2}{a^2+b^2}\ge a-\dfrac{ab^2}{2ab}=a-\dfrac{b}{2}=\dfrac{2a-b}{2}\)(áp dụng cosi cho \(a^2+b^2\ge2ab\))
\(\dfrac{b^3}{b^2+1}=b-\dfrac{b}{b^2+1}\ge b-\dfrac{b}{2b}=b-\dfrac{1}{2}=\dfrac{2b-1}{2}\)(áp dụng cosi cho\(b^2+1\ge2b\))
\(\dfrac{1}{a^2+1}=1-\dfrac{a^2}{a^2+1}\ge1-\dfrac{a^2}{2a}=1-\dfrac{a}{2}=\dfrac{2-a}{2}\)( áp dụng cosi cho \(a^2+1\ge2a\))
Cộng vế theo vế
\(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+1}+\dfrac{1}{a^2+1}\ge\dfrac{2a-b+2b-1+2-a}{2}\)\(\ge\dfrac{a+b+1}{2}\left(đpcm\right)\)
Dấu "=" xảy ra <=> a=b=1
\(\left\{{}\begin{matrix}x-y=1\left(1\right)\\\left(m+1\right)x+my=m+2\left(2\right)\end{matrix}\right.\) từ (1) ta được: \(y=x-1\) Thay vào (2) ta được: \(\left(m+1\right)x+m\left(x-1\right)=m+2\Leftrightarrow mx+x+mx-m=m+2\Leftrightarrow2mx+x=2m+2\Leftrightarrow\left(2m+1\right)x=2m+2\) ,để hpt có nghiệm duy nhất thì \(2m+1\ne0\Leftrightarrow m\ne-\frac{1}{2}\). Hệ pt có nghiệm duy nhất khi \(m\ne-\frac{1}{2}\) là:\(\left\{{}\begin{matrix}x=\frac{2m+2}{2m+1}\\y=x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1+\frac{1}{2m+1}\\y=\frac{1}{2m+1}\end{matrix}\right.\) . Để \(x^2+y^2\) nhỏ nhất \(\Leftrightarrow\left(1+\frac{1}{2m+1}\right)^2+\left(\frac{1}{2m+1}\right)^2\) nhỏ nhất
\(\Rightarrow\) tìm gtnn của \(\left(1+\frac{1}{2m+1}\right)^2+\left(\frac{1}{2m+1}\right)^2\)\(\left(1+\frac{1}{2m+1}\right)^2+\left(\frac{1}{2m+1}\right)^2=1+\frac{2}{2m+1}+\left(\frac{1}{2m+1}\right)^2+\left(\frac{1}{2m+1}\right)^2=1+\frac{2}{2m+1}+2\left(\frac{1}{2m+1}\right)^2=2\left[\left(\frac{1}{2m+1}\right)^2+\frac{1}{2m+1}+\frac{1}{4}\right]+\frac{1}{2}=2\left(\frac{1}{2m+1}+\frac{1}{2}\right)^2+\frac{1}{2}\) \(\Rightarrow\left(1+\frac{1}{2m+1}\right)^2+\left(\frac{1}{2m+1}\right)^2\) nhỏ nhất bằng 1/2. Dấu "\(=\)" xảy ra khi \(\frac{1}{2m+1}=-\frac{1}{2}\Leftrightarrow2m+1=-2\Leftrightarrow m=-\frac{3}{2}\left(tman\right)\). Vậy m\(=-\frac{3}{2}\)
sai bạn sửa lại nhé
sửa lại nhé
\(\left\{{}\begin{matrix}3\left(x-y\right)-y=11\\x-2\left(x+5y\right)=-15\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}3x-3y-y=11\\x-2x-10y=-15\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}3x-4y=11\\-x-10y=-15\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}x=5\\y=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-3y-y=11\\x-2x-10y=-15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-4y=11\\-x-10y=-15\left(1\right)\end{matrix}\right.\)
Nhân \(-3\) vào \(\left(1\right)\)
\(\left\{{}\begin{matrix}3x-4y=11\left(2\right)\\3x+30y=45\left(3\right)\end{matrix}\right.\)
Lấy \(\left(2\right)-\left(3\right)\) :
\(\Leftrightarrow3x-3x-4y-30y=11-45\)
\(\Leftrightarrow-34y=-34\)
\(\Leftrightarrow x=1\)
Lấy \(x=1\) thay vào \(\left(2\right)\) : \(3.1-4y=11\Leftrightarrow y=2\)
Vậy hệ pt có nghiệm duy nhất \(\left(x;y\right)=\left(1;2\right)\)
10: \(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\)
\(=\left(\sqrt{3-\sqrt{5}}\right)^2+\left(\sqrt{3+\sqrt{5}}\right)^2+2\cdot\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)
\(=3-\sqrt{5}+3+\sqrt{5}+2\cdot\sqrt{9-5}\)
\(=6+2\cdot2=10\)
11: \(\left(\sqrt{\sqrt{7}+\sqrt{3}}+\sqrt{\sqrt{7}-\sqrt{3}}\right)^2\)
\(=\left(\sqrt{\sqrt{7}+\sqrt{3}}\right)^2+\left(\sqrt{\sqrt{7}-\sqrt{3}}\right)^2+2\cdot\sqrt{\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)}\)
\(=\sqrt{7}+\sqrt{3}+\sqrt{7}-\sqrt{3}+2\cdot\sqrt{7-3}\)
\(=2\sqrt{7}+2\cdot2=2\sqrt{7}+4\)
12: \(\left(\sqrt{\sqrt{11}+\sqrt{7}}-\sqrt{\sqrt{11}-\sqrt{7}}\right)^2\)
\(=\left(\sqrt{\sqrt{11}+\sqrt{7}}\right)^2+\left(\sqrt{\sqrt{11}-\sqrt{7}}\right)^2-2\cdot\sqrt{\left(\sqrt{11}-\sqrt{7}\right)\left(\sqrt{11}+\sqrt{7}\right)}\)
\(=\sqrt{11}+\sqrt{7}+\sqrt{11}-\sqrt{7}-2\cdot\sqrt{11-7}\)
\(=2\sqrt{11}-4\)
13:
\(\sqrt{\sqrt{2}-1}\cdot\sqrt{2-\sqrt{3-\sqrt{2}}}\cdot\sqrt{2+\sqrt{3-\sqrt{2}}}\)
\(=\sqrt{\sqrt{2}-1}\cdot\sqrt{4-\left(3-\sqrt{2}\right)}\)
\(=\sqrt{\sqrt{2}-1}\cdot\sqrt{\sqrt{2}+1}\)
\(=\sqrt{2-1}=1\)
14:
\(\sqrt{4+\sqrt{8}}\cdot\sqrt{2+\sqrt{2+\sqrt{2}}}\cdot\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{\left(2+\sqrt{2+\sqrt{2}}\right)\left(2-\sqrt{2+\sqrt{2}}\right)}\)
\(=\sqrt{4+2\sqrt{2}}\cdot\sqrt{4-2-\sqrt{2}}\)
\(=\sqrt{\left(4+2\sqrt{2}\right)\left(2-\sqrt{2}\right)}\)
\(=\sqrt{8-4\sqrt{2}+4\sqrt{2}-4}=\sqrt{4}=2\)
1: \(A=\sqrt{\dfrac{2}{3}}-\sqrt{24}+2\cdot\sqrt{\dfrac{3}{8}}+\sqrt{\dfrac{1}{6}}\)
\(=\sqrt{\dfrac{6}{9}}-2\sqrt{6}+2\cdot\sqrt{\dfrac{6}{16}}+\sqrt{\dfrac{6}{36}}\)
\(=\dfrac{1}{3}\sqrt{6}-2\sqrt{6}+\dfrac{1}{2}\sqrt{6}+\dfrac{1}{6}\sqrt{6}\)
\(=-\sqrt{6}\)
2: \(A=\sqrt{150}+\sqrt{96}+\dfrac{9}{2}\cdot\sqrt{2\dfrac{2}{3}}-\sqrt{6}\)
\(=5\sqrt{6}+4\sqrt{6}+\dfrac{9}{2}\cdot\sqrt{\dfrac{8}{3}}-\sqrt{6}\)
\(=8\sqrt{6}+\dfrac{9}{2}\cdot\dfrac{2\sqrt{2}}{\sqrt{3}}\)
\(=8\sqrt{6}+3\sqrt{3}\cdot\sqrt{2}=11\sqrt{6}\)
3: \(A=2\sqrt{45}+\sqrt{32}-2\sqrt{20}-\dfrac{9}{2}\cdot\sqrt{8}\)
\(=2\cdot3\sqrt{5}+4\sqrt{2}-2\cdot2\sqrt{5}-\dfrac{9}{2}\cdot2\sqrt{2}\)
\(=6\sqrt{5}-4\sqrt{5}+4\sqrt{2}-9\sqrt{2}\)
\(=2\sqrt{5}-5\sqrt{2}\)
4: \(A=\sqrt{75}-\dfrac{1}{2}\cdot\sqrt{48}+\sqrt{300}-\sqrt{147}\)
\(=5\sqrt{3}-\dfrac{1}{2}\cdot4\sqrt{3}+10\sqrt{3}-7\sqrt{3}\)
\(=8\sqrt{3}-2\sqrt{3}=6\sqrt{3}\)
5: \(A=\sqrt{54}+2\sqrt{24}-\dfrac{3}{2}\cdot\sqrt{96}-\sqrt{216}\)
\(=3\sqrt{6}+2\cdot2\sqrt{6}-6\sqrt{6}-\dfrac{3}{2}\cdot4\sqrt{6}\)
\(=-3\sqrt{6}+4\sqrt{6}-6\sqrt{6}\)
\(=-5\sqrt{6}\)
6: \(A=3\sqrt{50}-2\sqrt{75}-4\cdot\dfrac{\sqrt{54}}{\sqrt{3}}-3\sqrt{\dfrac{1}{3}}\)
\(=3\cdot5\sqrt{2}-2\cdot5\sqrt{3}-4\cdot\sqrt{18}-\sqrt{3}\)
\(=15\sqrt{2}-10\sqrt{3}-12\sqrt{2}-\sqrt{3}\)
\(=3\sqrt{2}-11\sqrt{3}\)
a) A = \(13-2\sqrt{42}=\left(\sqrt{7}-\sqrt{6}\right)^2\)
<=> \(\sqrt{A}=\sqrt{7}-\sqrt{6}\)
b) \(A=46+6\sqrt{5}=\left(\sqrt{45}+1\right)^2\)
<=> \(\sqrt{A}=\sqrt{45}+1\)
c) \(A=12-3\sqrt{15}=\dfrac{1}{2}\left(24-6\sqrt{15}\right)=\dfrac{1}{2}\left(\sqrt{15}-3\right)^2\)
<=> \(\sqrt{A}=\dfrac{1}{\sqrt{2}}\left(\sqrt{15}-3\right)\)
c: Xét ΔHDK vuông tại H và ΔHIB vuông tại H có
góc HDK=góc HIB
=>ΔHDK đồng dạng với ΔHIB
=>HD/HI=HK/HB
=>HD*HB=HI*HK=AH^2