K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

vì 2k+1 là số lẻ nên trung bình cộng dãy đó là số nguyên tổng 2k+1 số nguyên liên tiếp bằng trung bình cộng của 2k+1 số dó nhân 2k+1

mà 2k+1 chia hết cho 2k+1nên tích đó chia hết cho 2k+1

\(=>\) tổng 2k+1 số nguyên đầu tiên chia hết cho 2k+1

chúc bạn học tốt 

mik ko chắc là mik đúng nx bạn thông cảm nha

8 tháng 2 2021

Vì 2k+1 là số lẻ nên trung bình cộng dãy đó là số nguyên tổng 2k+1 số nguyên liên tiếp bằng trung bình cộng của 2k+1 số đó nhân 2k+1

Mà 2k+1 chia hết cho 2k+1nên tích đó chia hết cho 2k+1

=> tổng 2k+1 số nguyên đầu tiên chia hết cho 2k+1

3 tháng 5 2022

a, gọi ba số tự nhiên liên tiếp là a,a+1,a+2

ta có a+(a+1)+(a+2) = 3a +3 chia hết cho 3

vì 3a chia hết cho3 , 3 chia hết cho 3 

suy ra ba số tự nhiên liên tiếp chia hết cho 3

 

b,gọi năm số liên tiếp là a ,a+1,a+2,a+3,a+4

ta có a+(a+1)+(a+2)+(a+3)+(a+4) = 5a +10 chia

 hết cho 5

vì 5a chia hết cho 5 ,10 chia hết cho 5

suy ra năm số tự nhiên lien tiếp chia hết cho5

Vì 2k+1 là số lể nên trung bình cộng dãy đó là số nguyên nên tổng 2k+1 số nguyên liên tiếp =trung bình cộng 2k+1 số đó nhân 2k+1

mà 2k+1 chia hết cho 2k+1 nên tích đó chia hết cho 2k+1⇒⇒tổng 2k+1 số nguyên đầu tiên chia hết cho 2k+1

27 tháng 2 2017

Vì 2k+1 là số lể nên trung bình cộng dãy đó là số nguyên nên tổng 2k+1 số nguyên liên tiếp =trung bình cộng 2k+1 số đó nhân 2k+1

mà 2k+1 chia hết cho 2k+1 nên tích đó chia hết cho 2k+1\(\Rightarrow\)tổng 2k+1 số nguyên đầu tiên chia hết cho 2k+1

6 tháng 4 2020

(2k + 1) . (2k + 2) . (2k + 3)

Chúc bạn học tốt

11 tháng 11 2020

a,Do p là số nguyên tố >3=>p2=3k+1 =>p2-1 chi hết cho 3

Tương tự, ta được q2-1 chia hết cho 3

Suy ra: p2-q2 chia hết cho 3(1)

Do p là số nguyên tố lớn hơn 3 nên p-1 và p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8<=>p2-1 chia hết cho 8

Do q là số nguyên tố lớn hơn 3 nên q-1 và q+1 là 2 số chẵn liên tiếp=>(q-1)(q+1) chia hết cho 8<=>q2-1 chia hết cho 8

Suy ra :p2-qchia hết cho 8(2)

Từ (1) và (2) suy ra p^2-q^2 chia hết cho BCNN(8;3)<=> p^2-q^2 chia hết cho 24

16 tháng 11 2019

mình thấy hơi khó

3 tháng 6 2015

do a ;a+k ; a+2k là số nguyên tố >3

=> a;a+k;a+2k lẻ

=> 2a+k chẵn =>k⋮ 2

mặt khác a là số nguyên tố >3 

=> a có dạng 3p+1 và 3p+2(p∈ N*)

xét a=3p+1

ta lại có k có dạng 3b ;3b+1;3b+2(b∈ N*)

với k=3b+1 ta có 3p+1+2(3b+1)=3(p+1+3b) loại vì a+2k là hợp số 

với k=3b+2 => b+k= 3(p+b+1) loại

=> k=3a

tương tự với 3p+2

=> k=3a

=> k⋮3

mà (3;2)=1

=> k⋮6

11 tháng 4 2016

Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ.

Mà số chẵn lớn hơn 3 thì chia hết cho 2 $⇒$⇒ không là số nguyên tố.

Vậy k phải là số chẵn (tức là k chia hết cho 2).

Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 $$ Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3 (vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3; 

- Nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2

- Nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).

Vậy k chia hết cho 2 và cho 3 $⇒$⇒ k chia hết cho tích (2 . 3)

$$ k chia hết cho 6 (đpcm).

11 tháng 4 2016

Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn ﴾tức là k chia hết cho 2﴿

Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3

﴾vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;

nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2

nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2﴿.

Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6