K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2023

CM: \(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\) + \(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{\left(2n+1\right)\left(2n+3\right)}\) = \(\dfrac{n+1}{2n+1}\)

Ta có:

VT = \(\dfrac{1}{2}\) \(\times\) ( \(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\)+....+\(\dfrac{2}{\left(2n+1\right)\left(2n+3\right)}\))

VT = \(\dfrac{1}{2}\) \(\times\) (\(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) +  \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\)+....+ \(\dfrac{1}{2n+1}\) - \(\dfrac{1}{2n+3}\))

VT = \(\dfrac{1}{2}\) \(\times\) (\(\dfrac{1}{1}\) - \(\dfrac{1}{2n+3}\) )

VT = \(\dfrac{1}{2}\) \(\times\)\(\dfrac{2n+3}{2n+3}\) - \(\dfrac{1}{2n+3}\))

VT = \(\dfrac{1}{2}\) \(\times\) \(\dfrac{2n+2}{2n+3}\)

VT = \(\dfrac{1}{2}\)  \(\times\)\(\dfrac{2\times\left(n+1\right)}{2n+3}\)

VT = \(\dfrac{n+1}{2n+3}\)  = VP (đpcm)

10 tháng 7 2016

\(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{\left(2n+1\right)x\left(2x+3\right)}=\frac{n+1}{2n+3}\)

=>\(2x\left(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{\left(2n+1\right)x\left(2n+3\right)}\right)=2x\frac{n+1}{2n+3}\)

=>\(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{\left(2n+1\right)\left(2n+3\right)}=\frac{2n+2}{2n+3}\)

=>\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n+1}-\frac{1}{2n+3}=\frac{2n+2}{2n+3}\)

=>\(1-\frac{1}{2n+3}=\frac{2n+2}{2n+3}\)

=>\(\frac{2n+2}{2n+3}=\frac{2n+2}{2n+3}\)

=>.....

24 tháng 5 2015

n(n+1)()2n+1) = n(n+1)(n+2 + n - 1) = n(n+1)(n+2) + (n-1).n.(n+1)

n(n+1)(n+2) ; (n-1).n.(n+1) đều là tích của 3 số tự nhiên liên tiếp nên các tích đó chia hết 6

=>  n(n+1)(n+2) + (n-1).n.(n+1) chia hết cho 6 

=> n(n+1)()2n+1) chia hết cho 6

12 tháng 12 2016

chứng minh n(n+5)(n+7) chia hết cho 6

23 tháng 7 2015

a)\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{7}\right)\)

\(=\frac{1}{2}.\frac{6}{7}\)

\(=\frac{3}{7}\)

b)\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009.2011}\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)

\(=\frac{1}{2}.\frac{2010}{2011}\)

\(=\frac{1005}{2011}\)

21 tháng 6 2021

Bạn ơi .là gì thế

 

3 tháng 7 2016

Để n+5 chia hết cho n-1 thì n-1 phải thuộc Ư(n+5)

Để 2m+4 chia hết cho n+2 thì n+2 phải thuộc Ư(2n+4)

Để 6n+4 chia hết cho 2n+1 thì 2n+1 phải thuộc Ư(6n+4)

Để 3-2n chia hết cho 2n+1 thì 2n+1 phải thuộc Ư(3-2n)

3 tháng 7 2016

Đề là gì zậy p

11 tháng 8 2015

B=\(\frac{\left(n+1\right)\left(2n+2\right)}{2}\)=(\(\frac{n\left(2n+2\right)+2n+2}{2}\)=\(\frac{2nn+2n+2n+2}{2}\)=\(\frac{2\left(nn+n+n+1\right)}{2}\)=nn+2n+1

1 tháng 5 2018

\(\frac{1}{1x3}\)\(\frac{1}{3x5}\)+....+\(\frac{1}{9x11}\))                                    x \(y\) = \(\frac{2}{3}\)

\(\frac{2}{1x3}\)\(\frac{2}{3x5}\)+...+\(\frac{2}{9x11}\))                                      x \(y\)\(\frac{4}{3}\)               (nhân 2 vế lên với 2)

(1 - \(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)- ...+ \(\frac{1}{9}\)\(\frac{1}{11}\))         x     \(y\)\(\frac{4}{3}\)

( 1 - \(\frac{1}{11}\))                                                                        x    \(y\)=\(\frac{4}{3}\)

\(\frac{10}{11}\)                  x            \(y\)                                                       =\(\frac{4}{3}\)

                                              \(y\)                                                      = \(\frac{4}{3}\)\(\frac{10}{11}\)

                                              \(y\)                                                       = \(\frac{4}{3}\)\(\frac{11}{10}\)

                                               \(y\)                                                       =\(\frac{22}{15}\)

1 tháng 5 2018

kết quả đúng nhưng mình ko hiểu bạn có thể giáng lại ko ?