K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2015

\(4-\sqrt{15}=\frac{1}{4+\sqrt{15}}\)

Đặt \(t=4+\sqrt{15}\)

Ta chứng minh \(t^n+\frac{1}{t^n}\in N\text{ (*) }\forall n\in N\text{*}.\)

\(+n=1:\text{ }t+\frac{1}{t}=4+\sqrt{15}+4-\sqrt{15}=8\in N\)

\(+n=2:\text{ }t^2+\frac{1}{t^2}=\left(t+\frac{1}{t}\right)^2-2\in N\)

Giả sử (*) đúng với n = k-1 và n = k, tức là \(t^{k-1}+\frac{1}{t^{k-1}}\in N;\text{ }t^k+\frac{1}{t^k}\in N\)

Ta chứng minh (*) đúng với n = k+1.

Thật vậy, ta có: \(\left(t+\frac{1}{t}\right)\left(t^k+\frac{1}{t^k}\right)\in N\Rightarrow t^{k+1}+\frac{1}{t^{k+1}}+t^{k-1}+\frac{1}{t^{k-1}}\in N\)

\(\Rightarrow t^{k+1}+\frac{1}{t^{k+1}}\in N\text{ }\left(do\text{ }t^{k-1}+\frac{1}{t^{k-1}}\in N\right)\)

Vậy theo nguyên lý quy nạp, (*) đúng với mọi số tự nhiên n.

Làm tương tự như trên, ta cũng chứng minh được \(t^n+\frac{1}{t^n}\text{ }\vdots\text{ }2\text{ }\forall n\in N\text{*}\)

14 tháng 8 2019

\(b,n^2\left(n^4-1\right)\)

\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)

Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp

\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)

\(\Rightarrowđpcm\)

=> 

24 tháng 1 2022

\(n\left(n^2-1\right)\left(n^2+6\right)\\=n\left(n-1\right)\left(n+1\right)\left(n^2-4+10\right) \\ =n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+10n\left(n-1\right)\left(n+1\right)\)

Vì n-2, n-1, n, n+1, n+2 là 5 số nguyên liến tiếp nên có ít nhất 1 số chia hết cho 2, 1 số chia hết 3, 1 số chia hết 5

Mà (2,3,5)=1\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮2.3.5=30\)

Vì n-1, n, n+1 là 3 số nguyên liến tiếp nên có ít nhất 1 số chia hết 3

\(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow10n\left(n-1\right)\left(n+1\right)⋮3.10=30\)

\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+10n\left(n-1\right)\left(n+1\right)⋮30\)

Vậy ...

Sửa đề: Chứng minh \(\left(\sqrt{7+4\sqrt{3}}+\sqrt{8-2\sqrt{15}}\right)-\left(\sqrt{8+2\sqrt{15}}-\sqrt{7-4\sqrt{3}}\right)=\left(\sqrt{3}-1\right)^2\)

Ta có: \(VT=\left(\sqrt{7+4\sqrt{3}}+\sqrt{8-2\sqrt{15}}\right)-\left(\sqrt{8+2\sqrt{15}}-\sqrt{7-4\sqrt{3}}\right)\)

\(=\left(\sqrt{4+2\cdot2\cdot\sqrt{3}+3}+\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\right)-\left(\sqrt{5+2\cdot\sqrt{5}\cdot\sqrt{3}+3}-\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\right)\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\left|2+\sqrt{3}\right|+\left|\sqrt{5}-\sqrt{3}\right|-\left|\sqrt{5}+\sqrt{3}\right|+\left|2-\sqrt{3}\right|\)

\(=\left(2+\sqrt{3}\right)+\left(\sqrt{5}-\sqrt{3}\right)-\left(\sqrt{5}+\sqrt{3}\right)+\left(2-\sqrt{3}\right)\)

\(=2+\sqrt{3}+\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}+2-\sqrt{3}\)

\(=4-2\sqrt{3}\)

\(=3-2\cdot\sqrt{3}\cdot1+1\)

\(=\left(\sqrt{3}-1\right)^2=VP\)(đpcm)

1 tháng 11 2018

Ta có: \(2\equiv-1\left(mod 3\right)\Rightarrow2^n\equiv\left(-1\right)^n\left(mod3\right)\)

Vì n là số tự nhiên nên n có dạng 2k hoặc 2k + 1 (k là số tự nhiên)

+) Nếu n có dạng 2k \(\Rightarrow2^n\equiv\left(-1\right)^n\equiv\left(-1\right)^{2k}\equiv\left[\left(-1\right)^2\right]^k\equiv1\left(mod3\right)\Rightarrow2^n-1\equiv0\left(mod3\right)\Rightarrow2^n-1⋮3\Rightarrow A⋮3\)

Nếu n có dạng 2k + 1 \(\Rightarrow2^n\equiv\left(-1\right)^{2k+1}\equiv\left(-1\right)^{2k}.\left(-1\right)\equiv-1\left(mod3\right)\Rightarrow2^n+1\equiv0\left(mod3\right)\Rightarrow2^n+1⋮3\Rightarrow A⋮3\)

12 tháng 6 2017

Đặt A =\(\frac{3}{5}.\left(\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{\left(5n-1\right).\left(5n+4\right)}\right)\)
\(\frac{3}{5}.\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)\)
\(\frac{3}{5}.\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)
\(\frac{3}{5}.\frac{1}{9}-\frac{3}{5}.\frac{1}{5n+4}=\frac{1}{15}-\frac{3}{5.\left(5n+4\right)}< \frac{1}{15}\)( ĐPCM )

12 tháng 6 2017

\(\frac{3}{9.14}+\frac{3}{14.19}+\frac{3}{19.24}+....+\frac{3}{\left(5n+1\right)\left(5n+4\right)}\)

\(=\frac{3}{5}\left(\frac{5}{9.14}+\frac{5}{14.19}+\frac{5}{19.24}+....+\frac{5}{\left(5n+1\right)\left(5n+4\right)}\right)\)

\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+....+\frac{1}{5n+1}-\frac{1}{5n+4}\right)\)

\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)

\(=\frac{1}{15}-\frac{3}{5\left(5n+4\right)}< \frac{1}{15}\) (đpcm)

AH
Akai Haruma
Giáo viên
27 tháng 9 2023

Lời giải:

$(4+\sqrt{15})(\sqrt{10}-\sqrt{6})\sqrt{4-\sqrt{15}}$

$=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{8-2\sqrt{15}}$

$=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})\sqrt{(\sqrt{5}-\sqrt{3})^2}$

$=(4+\sqrt{15})(\sqrt{5}-\sqrt{3})(\sqrt{5}-\sqrt{3})$

$=(4+\sqrt{15})(8-2\sqrt{15})=2(4+\sqrt{15})(4-\sqrt{15})$

$=2(4^2-15)=2$ (đpcm)