Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)
\(VT=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(VT=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}+\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(VT=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=VP\)=> ĐPCM
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\left(\text{đ}pcm\right)\)
Làm ơn giải giúp mình nhanh nhanh nhé, mình đang cần gấp, ai giải được mình k cho
1/101+1/102+..+1/200=(1+1/2+1/3+...+1/100)+1/101+1/102+1/103+...+1/200-(1+1/2+1/3+...+1/100)
=(1/2+1/4+1/6+...+1/200)+(1+1/3+1/5+...+1/199)-2(1/2+1/4+1/6+...+1/200)
=(1+1/3+1/5+...+1/199)-(1/2+1/4+1/6+...+1/200)
=1-1/2+1/3-1/4+1/5-1/6+...+1/199-1/200
suy ra ĐPCM
nguyen thieu cong thanh ơi cho mình hỏi:
sao lại là :2(1/2+1/4+1/6+...+1/200)
phải là : (1/2+1/4+1/6+...+1/200) chứ
đúng hok?????
Lời giải:
$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}$
$=(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199})-(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200})$
$=(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+>..+\frac{1}{199}+\frac{1}{200})-2(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200})$
$=(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{199}+\frac{1}{200})-(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100})$
$=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}$
cái này dễ lắm chỉ là chưa để ý thôi:
a,1/101>1/102>...>1/199>1/200
=>1/101+1/102+...+1/199+1/200<100*1/101=100/101<1
các phần khác làm tương tự
đánh mỏi tay quá duyệt luôn đi