K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2015

a, ta có 5 số tn liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 => ĐPCM 
nếu n chia cho 5 dư 1 => n +4 chia hết cho 5 => ĐPCM  
nếu n chia cho 5 dư 2 => n +3 chia hết cho 5 => ĐPCM  
nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => ĐPCM  
nếu n chia cho 5 dư 4 => n +1 chia hết cho 5 => ĐPCM 

Vậy trong 5 số tự nhiên liên tiếp luôn có một số chia hết cho 5

10 tháng 12 2017

ĐPCM là gì vậy

10 tháng 8 2017

khi chia mot so tu nhien cho 5,so du co the la 1,2,3,4

suy ra:khi chia bat ki 6 so tu nhien cho 5,so du bang 1 trong 5 so tu 0 den 4 

suy ra:co 2 trong 6 so do chia cho 5 co cung so du 

suy ra;hieu cua chung chia het cho 5

10 tháng 8 2017

Đề sai nha bạn. Vì là 6 số tự nhiên bất kỳ nên mình cho ví dụ này nhé: 1;3;5;7;9;11. Trong 6 số trên không có hiệu 2 số nào chia hết cho 5. Phải là 6 số tự nhiên liên tiếp mới được nha bạn.

10 tháng 8 2017

Cái này sai nha bạn, liên tiếp thì được chứ bất kỳ thì không được. Ví dụ: cho 6 số đó là : 1 ; 3 ; 5 ; 7 ; 9 ; 11.

Không có cặp số nào có hiệu chia hết cho 5 nha bạn.

17 tháng 9 2015

a) Khi chia 1 số tự nhiên cho 2, số dư có thể là 0  hoặc 1

=> Khi chia 3 số tự nhiên bất kì cho 2 số dư bằng một trong hai số 0; 1. 

=> 2 trong 3 số đó có cùng số dư => Hiệu của 2 số chia hết cho 2

b) Khi chia 1 số tự nhiên cho 5, số dư có thể là 0; 1; 2; 3; 4

=> Khi chia 6 số tự nhiên bất kì cho 5,  số dư  bằng1 trong 5 số 0; 1; 2; 3; 4.

=> Chắc chắn có 2 trong 6 số đó chia cho 5 có cùng số dư

=> Hiệu của chúng chia hết cho 5

Vậy...

 

1 tháng 11 2016
Gửi câu trả lời của bạnHãy gửi một câu trả lời để giúp Trần Diệu Linh giải bài toán này, bạn có thể nhận được điểm hỏi đáp và phần thưởng của Online Math dành cho thành viên tích cực giúp đỡ các bạn khác trên Online Math!              
14 tháng 10 2015

Học sinh hư! Học sinh hư!!! tran thi quynh huong

2 tháng 1 2017

tự làm nha. dễ lắm

22 tháng 7 2015

Sử dụng nguyên lý ĐI-rích-lê. Có bài tương tự trong câu hỏi tương tự