K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

Xem phần chứng minh tồn tại ít nhất 2 số có hiệu chia hết cho 10 tại đây nhé!
Bạn tham khảo:

Câu hỏi của kiều nguyệt Hằng - Toán lớp 6 - Học toán với OnlineMath

7 tháng 1 2017

(Modulo 3, nha bạn.)

Giả sử tồn tại 5 số thoả đề.

Trong 5 số nguyên dương phân biệt đó sẽ xảy ra 2 trường hợp:

1. Có 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2.

Khi đó, tổng 3 số này chia hết cho 3 (vô lí).

2. 5 số này khi chia cho 3 chỉ còn 2 loại số dư mà thôi.

Khi đó, theo nguyên lí Dirichlet thì tồn tại 3 số cùng số dư khi chia cho 3. Tổng 3 số này chia hết cho 3 (vô lí nốt).

Vậy điều giả sử là sai.

2 tháng 6 2015

gọi tập hợp a có các phần tử a1,a2,a3,...a51(gs a51>a50>....a1) có 51 phần tử khác nhau

tập hợp b có các phần từ a2-a1,a3-a1,...a51-a1 có 50 phần tử khác nhau, mỗi phần tử <100\

suy ra, a+b=51+50=101 phần tử khác nhau

mà từ 1 đến 100 có 100 số

suy ra tồn tại ít nhất 1 số bằng tổng 2 số được chọn

23 tháng 10 2018

Có 5 số, và 3 số dư khi chia cho 3 là 0;1;2 
Nếu có 3,4 hay 5 số mà có cùng số dư khi chia cho 3 thì tổng 3 trong số đó chia hết cho 3. 
Nếu có ít hơn 3 nghĩa là nhiều nhất 2 số có cùng số dư khi chia cho 3 thì trong 5 số đó cùng tồn tại các số chia 3 dư 0;1;2 nên tổng 3 số có số dư khi chia cho 3 khác nhau sẽ chia hết cho 3. 
Do đó trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3.

14 tháng 9 2021

Gọi tập hợp a có các phần tử a1,a2,a3,...a51(gs a51>a50>....a1) có 51 phần tử khác nhau

Tập hợp b có các phần từ a2-a1,a3-a1,...a51-a1 có 50 phần tử khác nhau, mỗi phần tử <100\

⇒ a+b=51+50=101 phần tử khác nhau

     Mà từ 1 đến 100 có 100 số

⇒ tồn tại ít nhất 1 số bằng tổng 2 số được chọn

21 tháng 9 2021

Sai nhé, bạn chép trên mạng à bro