Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xem phần chứng minh tồn tại ít nhất 2 số có hiệu chia hết cho 10 tại đây nhé!
Bạn tham khảo:
Câu hỏi của kiều nguyệt Hằng - Toán lớp 6 - Học toán với OnlineMath
(Modulo 3, nha bạn.)
Giả sử tồn tại 5 số thoả đề.
Trong 5 số nguyên dương phân biệt đó sẽ xảy ra 2 trường hợp:
1. Có 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2.
Khi đó, tổng 3 số này chia hết cho 3 (vô lí).
2. 5 số này khi chia cho 3 chỉ còn 2 loại số dư mà thôi.
Khi đó, theo nguyên lí Dirichlet thì tồn tại 3 số cùng số dư khi chia cho 3. Tổng 3 số này chia hết cho 3 (vô lí nốt).
Vậy điều giả sử là sai.
gọi tập hợp a có các phần tử a1,a2,a3,...a51(gs a51>a50>....a1) có 51 phần tử khác nhau
tập hợp b có các phần từ a2-a1,a3-a1,...a51-a1 có 50 phần tử khác nhau, mỗi phần tử <100\
suy ra, a+b=51+50=101 phần tử khác nhau
mà từ 1 đến 100 có 100 số
suy ra tồn tại ít nhất 1 số bằng tổng 2 số được chọn
Có 5 số, và 3 số dư khi chia cho 3 là 0;1;2
Nếu có 3,4 hay 5 số mà có cùng số dư khi chia cho 3 thì tổng 3 trong số đó chia hết cho 3.
Nếu có ít hơn 3 nghĩa là nhiều nhất 2 số có cùng số dư khi chia cho 3 thì trong 5 số đó cùng tồn tại các số chia 3 dư 0;1;2 nên tổng 3 số có số dư khi chia cho 3 khác nhau sẽ chia hết cho 3.
Do đó trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3.
Gọi tập hợp a có các phần tử a1,a2,a3,...a51(gs a51>a50>....a1) có 51 phần tử khác nhau
Tập hợp b có các phần từ a2-a1,a3-a1,...a51-a1 có 50 phần tử khác nhau, mỗi phần tử <100\
⇒ a+b=51+50=101 phần tử khác nhau
Mà từ 1 đến 100 có 100 số
⇒ tồn tại ít nhất 1 số bằng tổng 2 số được chọn