Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(5+5^2+5^3+....+5^{12}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+.......+\left(5^{11}+5^{12}\right)\)
\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+........+5^{10}\left(5+5^2\right)\)
\(=\left(5+5^2\right).\left(1+5^2+.......+5^{10}\right)\)
\(=30.\left(1+5^2+......+5^{10}\right)⋮30\)(1)
Ta lại có: \(5+5^2+5^3+......+5^{12}\)
\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+.......+\left(5^{10}+5^{11}+5^{12}\right)\)
\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+........+5^{10}\left(1+5+5^2\right)\)
\(=5.31+5^4.31+......+5^{10}.31\)
\(=31\left(5+5^4+......+5^{10}\right)⋮31\)(2)
Từ (1) và (2) \(\Rightarrowđpcm\)
\(A=3^{2022}-2^{2022}+3^{2020}-2^{2020}\\=(3^{2022}+3^{2020})-(2^{2022}+2^{2020})\\=3^{2020}\cdot(3^2+1)-2^{2020}\cdot(2^2+1)\\=3^{2020}\cdot10-2^{2019}\cdot2\cdot5\\=3^{2020}\cdot10-2^{2019}\cdot10\)
Ta có: \(\left\{{}\begin{matrix}3^{2020}\cdot10⋮10\\2^{2019}\cdot10⋮10\end{matrix}\right.\)
\(\Rightarrow3^{2020}\cdot10-2^{2019}\cdot10⋮10\)
hay \(A⋮10\) (đpcm)
\(\text{#}Toru\)
\(=5^{20}+\left(5^2\right)^{11}+\left(5^{ }^3\right)^7\)
=\(5^{^{ }20}+5^{22}+5^{21}\)
\(=5^{20}\cdot\left(1+5^2+5^1\right)\)
=\(5^{20}\cdot\left(1+25+5\right)\)
=\(5^{20}\cdot31\)
Vì 31 chia hết chó 31 nên
\(5^{20}+25^{^{ }11}+125^7\)chia hết cho 31
\(^{5^{20}+25^{11}+125^7}\)=\(1.5^{20}+25.25^{10}+\left(5^3\right)^7\)=\(1.5^{20}+25.\left(5^2\right)^{10}+5^{21}\)=\(1.5^{20}+25.5^{20}+5.5^{20}\)
=\(^{5^{20}.\left(1+25+5\right)}\)=\(5^{20}.31\)chia hết cho 31
Vậy \(5^{20}+25^{11}+125^7\)chia hết cho 31
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{y+z+x}=\dfrac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
Do đó \(\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
Thay vào biểu thức \(P=\left(x-y\right)^{2022}+\left(y-z\right)^{2023}+\left(x-z-1\right)^{202}\),ta có:
\(P=0^{2022}+0^{2023}+\left(-1\right)^{202}\)
\(=0+0+1\)
\(=1\)
\(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=\)
\(=5^3.21⋮7\)
10^6 - 5^7
= (2^6 x 5^6) - 5^7
= 5^6 x (2^6 - 5)
= 5^6 x 59
vậy nó chia hết cho 59.
10^6-5^7
=5^6.2^6-5^7
=5^6.2^6-5^6.5
=5^6.(2^6-5)
=5^6.59 chia hết cho 59
sossososo
:)))
Ta có \(B=5^{2024}+5^{2023}+5^{2022}\)
\(B=5^{2022}\left(5^2+5+1\right)\)
\(B=31.5^{2022}⋮31\)
Vậy \(B⋮31\) (đpcm)