K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2023

P(\(x\)) = \(x^4\) + 3\(x^2\) - 4033 

P(\(x\)) = \(x^4\) + 2.\(\dfrac{3}{2}\)\(x^2\) + \(\dfrac{9}{4}\) - \(\dfrac{16141}{4}\)

P(\(x\)) = (\(x^2\) + \(\dfrac{3}{2}\))2 - \(\dfrac{16141}{4}\)

P(\(x\)) = 0 ⇔ (\(x^2\) + \(\dfrac{3}{2}\))2 - \(\dfrac{16141}{4}\) = 0

              ⇒ (\(x^2\) + \(\dfrac{3}{2}\))2 = \(\dfrac{16141}{4}\) 

                     \(x^2\) + \(\dfrac{3}{2}\) = - \(\sqrt{\dfrac{16141}{4}}\) (loại)

                      \(x^2\) + \(\dfrac{3}{2}\) = \(\sqrt{\dfrac{16141}{4}}\) 

                     \(x^2\)  = \(\sqrt{\dfrac{16141}{4}}\) - \(\dfrac{3}{2}\) > 0

                     \(x\) = \(\mp\) \(\sqrt{\sqrt{\dfrac{16141}{4}}-\dfrac{3}{2}}\)

      Vậy việc chứng minh: P(\(x\)) vô nghiệm là không xảy ra 

DT
15 tháng 6 2023

Sửa đề : `P(x)=x^{4}+3x^{2}+4033`

Ta thấy : `x^{4},3x^{2}\ge0` với mọi `x`

`=>x^{4}+3x^{2}\ge0`

`=>P(x)=x^{4}+3x^{2}+4033\ge 4033>0`

Vậy `P(x)` vô nghiệm ( Do không có giá trị x thỏa mãn để `P(x)=0` )

`@` `\text {Ans}`

`\downarrow`

`P(x)=x^4 + 3x^2 + 13 = 0`

Vì \(\left\{{}\begin{matrix}x^4\ge0\text{ }\forall\text{ x}\\x^2\ge0\text{ }\forall\text{ x}\end{matrix}\right.\)

`=>`\(\left\{{}\begin{matrix}x^4\ge0\text{ }\forall\text{ x}\\3x^2\ge0\text{ }\forall\text{ x}\end{matrix}\right.\)

`=>`\(x^4+3x^2+13\ge13>0\text{ }\forall\text{ x}\)

Mà 13 \ne 0`

`=>` Đa thức `P(x)` vô nghiệm.

15 tháng 6 2023

P(x) = x⁴ + 2 . x² . 3/2 + (3/2)² + 13 - (3/2)²

= (x² + 3/2)² + 43/4

Do (x² + 3/2)² ≥ 0 với mọi x

⇒ (x² + 3/2)² + 43/4 > 0 với mọi x

Vậy P(x) vô nghiệm

\(f\left(x\right)=2x^4+3x^2+4=0\)

Đặt \(x^2=t\left(t\ge0\right)\)

Ta có \(2t^2+3t+4=0\)

Do \(2t^2\ge0;3t\ge0;4>0\)

Nên đa thức ko có nghiệm 

P(x)=-8x^3+6x^3+2x^3+3x^4-3x^4+4x^2-2020+2025

=4x^2+5>=5>0 với mọi x

=>P(x) không có nghiệm

10 tháng 8 2023

cảm ơn bạn

 

22 tháng 4 2018

Ta có :

x4 + 3x2 + 3

= ( x2 )2 + 2 . \(\frac{3}{2}\). x2 + \(\left(\frac{3}{2}\right)^2\)\(\frac{3}{4}\)

= ( x2 + \(\frac{3}{2}\))2 + \(\frac{3}{4}\)> 0

Vậy ...

22 tháng 4 2018

thank bạn nhìu

20 tháng 5 2018

\(=\left(x^4+x^3+x^2\right)+\left(3x^2+3x+3\right)=x^2\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)

\(=\left(x^2+3\right)\left(x^2+x+1\right)=\left(x^2+3\right)\left(x^2+2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right)\)

\(=\left(x^2+3\right)\left(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right)\)

vì \(x^2>=0;3>0\Rightarrow x^2+3>0\)

\(\left(x+\frac{1}{2}\right)^2>=0;\frac{3}{4}>0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\Rightarrow\left(x^2+3\right)\left(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right)>0\Rightarrow\)đa thức trên vô nghiệm

16 tháng 4 2016

Vì x4 \(\ge\) 0 với mọi x \(\in\) R

   3x2 \(\ge\) 0 với mọi x \(\in\) R

=>x4+3x2 \(\ge\) 0 với mọi x \(\in\) R

=>x4+3x2+3 \(\ge0+3>0\) với mọi x \(\in\) R

=>P(x) vô nghiệm

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

10 tháng 4 2016

vì x^2 >hoặc= 0 (với mọi giá trị của x)

Suy ra x^2-3x+12 > 0 (với mọi x)

Suy ra x^2-3x+12 khác o

Suy ra x^2-3x+12 vô nghiệm

Tham khảo:x^2-5x+20 
ta có: x^2-5x+20=x^2-2/5x-2/5x+25/4-25/4+20 
=(x^2-2/5x)-(2/5x-25/4)-25/4+80/4 
=x(x-2/5)-2/5(x-2/5)+55/4 
=(x-2/5)(x-2/5)+55/4 
=(x-2/5)^2+55/4 
Ta có: (x-2/5)^2>=0 Với x thuộc R 
(x-2/5)^2+55/4>=55/4>0 
=>Đa thức không có nghiệm

24 tháng 6 2020

Ta có : \(P\left(x\right)=0< =>x^2+3x+5=0\)

Lại có : \(\Delta=3^2-4.5=9-20=-11\)

Vì delta < 0 nên đa thức trên vô nghiệm 

24 tháng 6 2020

p(x) = x^2 + 3x + 5

= x^2 + 2.3/2.x + 9/4 + 2.75

= (x + 3/2)^2 + 2.75

có (x + 3/2)^2 > 0

=> p(x) > 2.75

=> vô nghiệm