K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Có P(x)=3x^4+x^2+1/4

   Vì 3x^4 \(\ge\) 0  Với mọi x

         x^2 \(\ge\) 0   Với mọi x

    nên 3x^4+x^2 \(\ge\) 0 với mọi x

=>3x^4+x^2+1/4 \(\ge\) 0+1/4 >0   với mọi x

=>P(x) > với mọi x 

Vậy P(x) vô nghiệm

 

11 tháng 4 2021

f(x)=x2+x+1=x2+\(\dfrac{1}{2}x+\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)

      =\(x\left(x+\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)

      =\(\left(x+\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^{^2}+\dfrac{3}{4}\)

=>f(x)≥\(\dfrac{3}{4}\)

=>đa thức trên vô nghiệm

11 tháng 4 2021

Bài này có nhiều cách, vừa rồi là cách cơ bản, còn nếu bạn muốn nâng cao chút thì có thể dùng cách này nha:

Xét x≥0 thì x+1>0

       x(x+1)≥0=>x(x+1)+1>0 =>x2+x+1>0                               (1)

Xét -1<x<0 thì x+1≤0. Ta lại có x2≥0 nên x2+x+1 >0                   (2)

Xét x≤-1 thì x<0 và x+1≤0. Do đó

    x(x+1) ≥0=>x(x+1) +1>0=>x2+x+1>0                           (3)

Từ (1), (2), (3)=> đa thức f(x) vô nghiệm

10 tháng 4 2021

Bằng 2 cách

10 tháng 4 2021

f(x) đề có cho bằng 0 không vậy em ? 

10 tháng 5 2022

Cho `f(x)=0`

`=>(x^2-2)(3x^4+6)=0`

   Mà `3x^4+6 > 0 AA x`

`=>x^2=2`

`=>x^2=2`

`=>x=+-\sqrt{2}`

Vậy nghiệm của đa thức `f(x)` là `x=\sqrt{2}` hoặc `x=-\sqrt{2}`

10 tháng 5 2022

cho f(X) = 0

\(=>\left(2x-2\right)\left(3x.4+6\right)=0\)

\(=>\left[{}\begin{matrix}2x-2=0\\12x+6=0\end{matrix}\right.=>\left[{}\begin{matrix}2x=2\\12x=-6\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)

30 tháng 3 2023

a)⇔A= x4+2x3-5x+9+2x4-2x3= 3x4-5x+9

  ⇔B= 2x2-6x+2-3x4-2x2+3x-4= -3x4-3x-2

b)A(x)+B(x)= 3x4-5x+9-3x4-3x-2= -8x+7

  A(x)-B(x)= 3x4-5x+9+3x4+3x+2= 6x4-2x+1

c)C(x) có hệ số tự do bằng 0 nên có nghiệm bằng 0

d)A(x)+5x= 3x4+9. Tại x bất kì thì 3x4≥0 ⇔ 3x4+9 ≥ 9 ≥ 0

⇒ H(x) vô nghiệm

17 tháng 5 2018

Bạn dò lại đề nha

11 tháng 5 2021

`f(x)=x^4+x^2+x+1`

Đặt `f(x)=0`

`<=>x^4+x^2+x+1=0`

`<=>x^4-x^2+1/4+x^2+x+1/4+x^2+1/2=0`

`<=>(x^2-1/2)^2+(x+1/2)^2+x^2+1/2=0`

Vì `(x^2-1/2)^2+(x+1/2)^2+x^2+1/2>=1/2>0`

`=>f(x)` vô nghiệm.

`a,`

`F(x)=4x^4-2+2x^3+2x^4-5x+4x^3-9`

`F(x)=(2x^4+4x^4)+(2x^3+4x^3)-5x+(-2-9)`

`F(x)=6x^4+6x^3-5x-11`

`b,`

`K(x)=F(x)+G(x)`

`K(x)=(6x^4+6x^3-5x-11)+(6x^4+6x^3-x^2-5x-27)`

`K(x)=6x^4+6x^3-5x-11+6x^4+6x^3-x^2-5x-27`

`K(x)=(6x^4+6x^4)+(6x^3+6x^3)-x^2+(-5x-5x)+(-11-27)`

`K(x)=12x^4+12x^3-x^2-10x-38`

`c,`

`H(x)=F(x)-G(x)`

`H(x)=(6x^4+6x^3-5x-11)-(6x^4+6x^3-x^2-5x-27)`

`H(x)=6x^4+6x^3-5x-11-6x^4-6x^3+x^2+5x+27`

`H(x)=(6x^4-6x^4)+(6x^3-6x^3)+x^2+(-5x+5x)+(-11+27)`

`H(x)=x^2+16`

Đặt `x^2+16=0`

Ta có: \(x^2\ge0\text{ }\forall\text{ }x\)

`->`\(x^2+16\ge16>0\text{ }\forall\text{ }x\)

`->` Đa thức `H(x)` vô nghiệm.

16 tháng 4 2023

Mình cần gấp lắm r, giúp mình với

 

\(5x^2+9>=9>0\forall x\)

nên f(x) vô nghiệm

11 tháng 5 2022

Cho `f(x)=0`

`=>5x^2+9=0`

`=>5x^2=-9` (Vô lí vì `5x^2 >= 0` mà `-9 < 0`)

Vậy đa thức `f(x)` vô nghiệm