Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=2x^4+3x^2+4=0\)
Đặt \(x^2=t\left(t\ge0\right)\)
Ta có \(2t^2+3t+4=0\)
Do \(2t^2\ge0;3t\ge0;4>0\)
Nên đa thức ko có nghiệm
\(x^2+2x+3=0\)
\(=>\hept{\begin{cases}x^2=0\\2x=0\\3=0\end{cases}}\)
\(=>\hept{\begin{cases}x=0\\x=0\\3\end{cases}=>0+0+3\ne0}\)
=> \(x^2+2x+3\)vô nghiệm
\(f\left(x\right)=x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)
Ta có: \(\left(x+1\right)^2\ge0\) với mọi \(x\in R\)
\(\Rightarrow\left(x+1\right)^2+2\ge2>0\)với mọi \(x\in R\)
\(\Rightarrow x^2+2x+3>0\) với mọi \(x\in R\)
Vậy đa thức \(f\left(x\right)=x^2+2x+3\) vô nghiệm
tại f(x) = x2 -x -x + 2 =0 ta có
x(x-1) -(x-1) +1 =0
(x-1)(x-1) +1 =0
(x-1)2 +1 =0 (1)
Vì (x-1)2 \(\ge\)0
nên \(\left(x-1\right)^2+1\ge1>0\)
Vậy (1) là vô lí
Do đó đa thức f(x) = x^2 -x -x +2 vô nghiệm
`f(x)=x^4+x^2+x+1`
Đặt `f(x)=0`
`<=>x^4+x^2+x+1=0`
`<=>x^4-x^2+1/4+x^2+x+1/4+x^2+1/2=0`
`<=>(x^2-1/2)^2+(x+1/2)^2+x^2+1/2=0`
Vì `(x^2-1/2)^2+(x+1/2)^2+x^2+1/2>=1/2>0`
`=>f(x)` vô nghiệm.