Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A+B-C=16x^4-8x^3y+7x^2y^2-9y^4-15x^4+3x^3y-5x^2y^2-6y^4-5x^3y-3x^2y^2-17y^4-1\)
\(=\left(16x^4-15x^4\right)+\left(-8x^3y+3x^3y-5x^3y\right)+\left(7x^2y^2-5x^2y^2-3x^2y^2\right)+\left(-9y^4-6y^4-17y^4\right)-1\)
\(=x^4-10x^3y-x^2y^2-32y^4-1\)
\(b,A-C+B=A+B-C\) ( giống câu a )
\(a,\)
\(A+B+C\)
\(=16x^4-8x^3y+7x^2y^2-9y^4-15x^4+3x^3y-5x^2y^2-6y^4-\left(5x^3y+3x^2y^2+17y^4+1\right)\)
\(=16x^4-8x^3y+7x^2y^2-9y^4-15x^4+3x^3y-5x^2y^2-6y^4-5x^3y-3x^2y^2-17y^4-1\)
\(=\left(16x^4-15x^4\right)+\left(-9y^4-6y^4-17y^4\right)+\left(-8x^3y+3x^3y-5x^3y\right)+\left(7x^2y^2-5x^2y^2-3x^2y^2\right)-1\)
\(=x^4-32y^4-10x^3y-x^2y^2-1\)
\(b,\)
\(A-C+B=A+B-C=x^4-32y^4-10x^3y-x^2y^2-1\)
a/ (x-1)2-(4x+3)(2-x)=x2-2x+1-(8x-4x2+6-3x)
=x2-2x+1-8x+4x2-6+3x=5x2-7x-6
b/ (15x3y2 - 6x2y3) : 3x2y2 = 5x - 2y
c/ \(\dfrac{x+7}{x-7}-\dfrac{x-7}{x+7}+\dfrac{4x^2}{x^2-49}\)=\(\dfrac{\left(x+7\right)^2-\left(x-7\right)^2+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{x^2+14x+49-\left(x^2-14x+49\right)+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{28x+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{4x\left(x+7\right)}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{4x}{x-7}\)
xin hỏi bạn có viết lộn không, vế trái không có Z mà tại sao vế phải lại xuất hiện Z vậy
\(=\dfrac{30\left(x^3-y^3\right)\left(x^2-y^2\right)}{3\left(x+y\right)\left(x^2+xy+y^2\right)}=\dfrac{10\left(x-y\right)^2\left(x+y\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)\left(x^2+xy+y^2\right)}=10\left(x-y\right)^2\)
a: =>A-B=3x^2y-4xy^2+x^2y-2xy^2=4x^2y-6xy^2
b: =>B-A=-7xy^2+8x^2y-5xy^2+6x^2y=-12xy^2+14x^2y
=>A-B=12xy^2-14x^2y
c: =>B-A=8x^2y^3-4x^3y-3x^2y^3+5x^3y^2=5x^2y^3+x^3y^2
=>A-B=-5x^2y^3-x^3y^2
d: =>A-B=2x^2y^3-7x^3y+6x^2y^3+3x^3y^2=8x^2y^3-7x^3y+3x^3y^2
\(VT=\dfrac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}=\dfrac{\left(x+y\right)\left(x+2y\right)}{\left(x+2y\right)\left(x-y\right)\left(x+y\right)}=\dfrac{1}{x-y}\)
Xét:
\(\left(3x-2y\right)\left(25x^2-9y^2\right)\)
\(=\left(3x-2y\right)\left(5x-3y\right)\left(5x+3y\right)\)
\(=\left(5x-3y\right)\left(15x^2+9xy-10xy-6y^2\right)\)
\(=\left(5x-3y\right)\left(15x^2-xy-6y^2\right)\)
Từ đó dễ dàng suy ra tích chéo = nhau => đpcm
ta có : \(VP=\dfrac{15x^2-xy-6y^2}{25x^2-9y^2}=\dfrac{\left(3x-2y\right)\left(5x+3y\right)}{\left(5x-3y\right)\left(5x+3y\right)}=\dfrac{3x-2y}{5x-3y}=VT\)