Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(\Leftrightarrow A=\dfrac{3}{8}xy^2+B-\dfrac{5}{6}x^2y+\dfrac{3}{4}x^2y-\dfrac{5}{8}xy^2\\ \Leftrightarrow A-B=-\dfrac{1}{12}x^2y-\dfrac{1}{4}xy^2\)
b/
\(\Leftrightarrow A-B=5xy^3-\dfrac{5}{8}yx^3-\dfrac{21}{4}xy^3+\dfrac{3}{7}x^3y\\ \Leftrightarrow A-B=-\dfrac{1}{4}xy^3-\dfrac{11}{56}x^3y\)
Bài 45: (SBT/12):
a. (5x4 - 3x3 + x2) : 3x2
= (5x4 : 3x2) + (-3x3 : 3x2) + (x2 : 3x2)
=\(\dfrac{5}{2}\)x2 - x + \(\dfrac{1}{3}\)
b. (5xy2 + 9xy - x2y2) : (-xy)
= [5xy2 : (-xy)] + [9xy : (-xy)] + [(-x2y2) : (-xy)]
= -5y - 9 + xy
c. (x3y3 : \(\dfrac{1}{3}\)x2y3 - x3y2) : \(\dfrac{1}{3}\)x2y2
= (x3y3 : \(\dfrac{1}{3}\)x2y2) + (-\(\dfrac{1}{2}\)x2y3 : \(\dfrac{1}{3}\)x2y2) + (-x3y2 : \(\dfrac{1}{3}\)x2y2)
= 3xy - \(\dfrac{3}{2}\)y - 3x
a: \(=\dfrac{27a^6b^3\cdot a^2b^6}{a^8b^8}=27b\)
b: \(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
c: \(=6x-y+2x^2+3y-2x^2+x\)
\(=7x+2y\)
d: \(=x-y+2y^2-6xy+\dfrac{10x^2}{y}\)
a: \(=3y^2-5x^2y^3-2y^2+3x^2y^3=y^2-2x^2y^3\)
b: \(=6x-y+2x^2+3y^2-2x^2+x=7x-y+3y^2\)
c: \(=x-y+4y^2-6xy+\dfrac{10x^2}{y}\)
\(a.\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
\(=3y^2-5x^2y^3-2y^2+3x^2y^3\)
\(=y^2-2x^2y^3\)
\(b.\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
\(=6x-y+2x^2+3y-2+x\)
\(=2x^2+7x+2y-2\)
\(c.\left(x^2-xy\right):x+\left(6x^2y^5-9x^3y^4+15x^4y^3\right):\dfrac{3}{2}x^2y^3\)
\(=x-y+4y^2-6xy+10x^2\)
e) = \(\dfrac{3}{2\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\)
= \(\dfrac{3x}{2x\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\) = \(\dfrac{3x-x+6}{2x\left(x+3\right)}\)
= \(\dfrac{2x-6}{2x\left(x+3\right)}\)
= \(\dfrac{2\left(x-3\right)}{2x\left(x+3\right)}\)
c) = \(\dfrac{2\left(a^3-b^3\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)\left(a^2-2ab+b^2\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)}{1}\) . \(\dfrac{2}{1}\) = -4 (a+b)
a. Vì đa thức \(\left(5x^3-7x^2+x\right)\) chia hết cho \(3x^n\)
nên hạng tử x chia hết cho \(3x^n\Rightarrow0\le n\le1\)\(\Rightarrow n\in\left\{0;1\right\}\)
b. Vì đa thức \(\left(13x^4y^3-5x^3y^3+6x^2y^2\right)\) chia hết cho \(5x^ny^n\)
Nên hạng tử \(6x^2y^2\) chia hết cho \(5x^ny^n\Rightarrow0\le n\le2\Rightarrow x\in\left\{0;1;2\right\}\)
a: =>A-B=3x^2y-4xy^2+x^2y-2xy^2=4x^2y-6xy^2
b: =>B-A=-7xy^2+8x^2y-5xy^2+6x^2y=-12xy^2+14x^2y
=>A-B=12xy^2-14x^2y
c: =>B-A=8x^2y^3-4x^3y-3x^2y^3+5x^3y^2=5x^2y^3+x^3y^2
=>A-B=-5x^2y^3-x^3y^2
d: =>A-B=2x^2y^3-7x^3y+6x^2y^3+3x^3y^2=8x^2y^3-7x^3y+3x^3y^2