Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Leftrightarrow3+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\ge9\)
\(\Leftrightarrow\left(\frac{a}{b}-2+\frac{b}{a}\right)+\left(\frac{a}{c}-2+\frac{c}{a}\right)+\left(\frac{b}{c}-2+\frac{c}{b}\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2+\left(\sqrt{\frac{a}{c}}-\sqrt{\frac{c}{a}}\right)^2+\left(\sqrt{\frac{b}{c}}-\sqrt{\frac{c}{b}}\right)^2\ge0\)
Cái này đúng vậy ta có điều phải chứng minh
áp dung BĐT cô si \(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\)
vì a+b+c=1 => dpcm
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)>=9\)
<=>1+1+1 +\(\frac{a}{b}+\frac{b}{a}+\frac{c}{a}+\frac{a}{c}+\frac{b}{c}+\frac{c}{b}\)>=9 (*)
áp đụng cô si
\(\frac{a}{b}+\frac{b}{a}>=2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)
tương tự
\(\frac{a}{c}+\frac{c}{a}>=2\)
\(\frac{b}{c}+\frac{c}{b}>=2\)
=> (*) đúng Mà a+b+c=1
=> đpcm
a) áp dụng bđt cô si cho 2 số ta có
\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}\)
⇔ \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\) (đpcm )
b) áp dụng bđt cô si dạng phân số ta có
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}\)
⇔ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\) (đpcm)
1) a3+b3+c3-3abc = (a+b)3-3ab(a+b)+c3-3abc
= (a+b+c)(a2+2ab+b2-ab-ac+c2) -3ab(a+b+c)
= (a+b+c)( a2+b2+c2-ab-bc-ca)
xài bđt phụ mới cần phải chứng minh nhé
mà tau nhớ làm gì có Cô si dạng Engel ??? ._.
Câu 1/ Ta có: 2n + 1 = a2 ; 3n + 1 = b2
=> 4(2n + 1) - (3n + 1) = 4a2 - b2
<=> 5n + 3 = (2a - b)(2a + b)
Ta thấy 2a + b > 1
Giờ chỉ việc chứng minh
2a - b = 1 (vô nghiệm là có thể kết luận rồi nhé )
\(x^3+3x^2+2x=x\left(x^2+3x+2\right)=x\left(x+1\right)\left(x+2\right)\)
nhân chéo lên
nhân a+b+c từ 9/a+b+c sang vế trái
vế phải còn 9
sau đó nhân vế trái ra
sử dụng bdt cosi là ra nha bn
mik lớp 7 sory