K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

20 tháng 10 2019

a) Ta có: ( n   +   3 ) 2   -   ( n   - 1 ) 2  = 8(n +1) chia hết cho 8.

b) Ta có: ( n   +   6 ) 2   -   ( n   -   6 ) 2  = 24n chia hết cho 24.

9 tháng 8 2020

câu 1 đề đúng nha bn

còn đề câu 2 là chia hết cho 45

9 tháng 8 2020

Hoàng Việt Bách yêu cầu bn làm 1 câu hỏi khác theo yêu cầu mk ns trog phần tin nhắn nha !!! ! check tin nhắn bn ey !

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???

15 tháng 1 2017

 a,

n kog chia hết cho 3. Ta có: n = 3k +1 và n = 3k+2

TH1: n2 : 3 <=> (3k+1): 3 = (9k2+6k+1) : 3 => dư 1

TH2: n: 3 <=> (3k+2)2 : 3 = (9k2+12k+4) : 3 = (9k2+12k+3+1) : 3 => dư 1 

các phần sau làm tương tự.

16 tháng 11 2015

a. Ta có:

\(\left(n+3\right)^2-\left(n-1\right)^2=\left(n+3-n+1\right)\left(n+3+n-1\right)=4\left(2n+2\right)=8n+8=8\left(n+1\right)\)chia hết cho \(8\)

b. Đặt \(M=n^3+3n^2-3-n\), ta có:

\(M=n^2\left(n+3\right)-\left(n+3\right)=\left(n+3\right)\left(n^2-1\right)=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

Vì  \(n\) là một số lẻ nên 

 \(\left(n-1\right)\left(n+1\right)\) chia hết cho \(8\) (vì là tích của hai số chẵn liên tiếp)

và  \(n+3\) là số chẵn nên chia hết cho \(2\) 

Do đó: \(M\)chia hết cho  \(8.2=16\)  \(\left(\text{*}\right)\)

Mặt khác: \(M=n^3+3n^2-3-n=n\left(n^2-1\right)+3\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)+3\left(n^2-1\right)\)

Xét trường hợp:

+)  \(n=3k\Rightarrow n\left(n-1\right)\left(n+1\right)\) chia hết cho  \(3\)  \(\Rightarrow M\) chia hết cho  \(3\)

+) \(n=3k+1\Rightarrow\left(n-1\right)\) chia hết cho  \(3\)  \(\Rightarrow M\) chia hết cho  \(3\)

+) \(n=3k+2\Rightarrow\left(n+1\right)\) chia hết cho \(3\)  \(\Rightarrow M\) chia hết cho  \(3\)

nên  \(M\) chia hết cho  \(3\) \(\left(\text{**}\right)\)

Lại có: \(\left(16;3\right)=1\) \(\left(\text{***}\right)\)

Từ \(\left(\text{*}\right)\) , \(\left(\text{**}\right)\) ,  \(\left(\text{***}\right)\) suy ra  \(M\) chia hết  \(48\) với \(n\) lẻ

16 tháng 11 2015

tick cho mình rồi mình làm cho

21 tháng 10 2015

2009^2010đồng dư với 1 (theo mod 2010)

\(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=n^2+6n+9-n^2+2n-1\)

\(=8\left(n+1\right)⋮8\)