Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Quản lý ko duyệt vậy t copy bài của bạn Lê anh tú CTV nhé
áp dụng dãy tỉ số = nhau ta được
\(\Leftrightarrow\frac{\left(ab+ac\right)+\left(bc+ba\right)-\left(ca+cb\right)}{2+3-4}=\frac{\left(ab+ab\right)+\left(bc-bc\right)+\left(ac-ac\right)}{1}=\frac{2ab}{1}\)
tương tự
\(\frac{\left(ab+ac\right)+\left(ca+cb\right)-\left(bc+ba\right)}{2+4-3}=\frac{\left(ab-ab\right)+\left(ac+ac\right)+\left(cb-cb\right)}{3}=\frac{2ac}{3}\)
tương tự
\(\frac{\left(bc+ba\right)+\left(ca+cb\right)-\left(ab+ac\right)}{3+4-2}=\frac{\left(cb+cb\right)+\left(ba-ba\right)+\left(ca-ca\right)}{5}=\frac{2cb}{5}\)
từ 1,2,3 ta sy ra
\(\frac{2ab}{1}=\frac{2ac}{3}=\frac{2cb}{5}\)
\(\frac{2ba}{1}=\frac{2bc}{5}\) " vì 2b=2b" suy ra \(\frac{a}{1}=\frac{c}{5}\)" nhân 3 cho mẫu số của 2 vế ta được \(\frac{a}{3}=\frac{c}{15}\) " 1"
tương tự với \(\frac{2ca}{3}=\frac{2cb}{5}\) " vì 2c=2c suy ra \(\frac{a}{3}=\frac{b}{5}\) "2"
từ 1 và 2 suy ra \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
Mình đã làm rùi và rất ngại làm lại nên bạn chịu khó nhìn nha ! Vào TKHĐ của mình
Sử dụng bất đẳng thức Bunhiacopxki dạng phân thức và khi đó ta được:
\(\frac{a^5}{a^2+ab+b^2}+\frac{b^5}{b^2+bc+c^2}+\frac{c^5}{c^2+ca+a^2}\ge\)
\(\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2}\)
\(\Rightarrow\)Ta cần chỉ ra được:
\(\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2}\ge\frac{a^3+b^3+c^3}{3}\)
Hay: \(2\left(a^3+b^3+c^3\right)\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)
Dễ thấy: \(a^3+b^3\ge ab\left(a+b\right);b^3+c^3\ge bc\left(b+c\right);c^3+a^3\ge ca\left(c+a\right)\)
Cộng theo vế các bất đẳng thức trên ta được:
\(2\left(a^3+b^3+c^3\right)\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)
Vậy bất đẳng thức đã được chứng minh.
Ta có: M= abc/ ab+bc+ca
<=> 1/M = ab+ bc+ ca/ abc= 1/a+ 1/b+ 1/c (1)
Do: ab/ a+2b= 2/5 nên a+2b/ ab= 5/2
<=> 1/b+ 2/a= 5/2 (2)
Tương tự: bc/ b+2c= 3/4 nên b+2c/ bc= 4/3
<=> 1/c+2/b=4/3 (3)
ac/c+2a=3/5 <=> c+2a/ac=5/3
<=> 1/a+2/c=5/3 (4)
Cộng tổng của (2), (3), (4) ta đc:
( 1/b+2/a) + (1/c+2/b)+(1/a+2/c)= 5/2+4/3+5/3
<=> 3/a+3/b+3/c=5/2+3
<=> 3 x (1/a+1/b+1/c)=11/2 (5)
Thay (1) vào (5), ta có: 3 x 1/M = 11/2
<=> 1/M=11/6 <=>M=6/11
Vậy giá trị biểu thức M=6/11