Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì abc=105 nên thay 105 bằng abc ta được:
\(s=\frac{abc}{a\left(bc+b+1\right)}\)+\(\frac{b}{bc+b+1}\)+\(\frac{a}{ab+a+abc}\)
\(s=\frac{bc}{bc+b+1}\)+\(\frac{b}{bc+b+1}\)+\(\frac{1}{b+1+bc}\)=\(\frac{bc+b+1}{bc+b+1}\)=1
Cho mình 1 l i k e nha..............
\(A=\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\)
\(=\frac{c}{c\left(1+a+ab\right)}+\frac{ac}{ac\left(1+b+bc\right)}+\frac{1}{1+c+ca}\)
\(=\frac{c}{c+ac+abc}+\frac{ac}{ac+abc+abc^2}+\frac{1}{1+c+ca}\)
thay a.b.c=1 Ta đc:
\(a=\frac{c}{c+ac+1}+\frac{ac}{ac+1+c}+\frac{1}{1+c+a}\) cộng 3 phân số cùng mẫu c+ac+1
\(=\frac{c+ac+1}{c+ac+1}=1\)
tick cho mk vs nhé
Do \(abc=2018,bc+b+1\ne0\) nên thay vào biểu thức A ta có :
\(A=\frac{2018}{abc+bc+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+2018}\)
\(=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\)
\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{a}{a\left(bc+b+1\right)}\)
\(=\frac{bc}{bc+b+1}+\frac{b}{bc+b+1}+\frac{1}{bc+b+1}\)
\(=\frac{bc+b+1}{bc+b+1}=1\)
Vậy : \(A=1\) với a,b,c thỏa mãn đề.
\(A=\frac{2018}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+2018}\)
\(=\frac{abc}{abc+ab+a}+\frac{ab}{abc+ab+a}+\frac{a}{ab+a+abc}\)
\(=1\)
Vậy ...