Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\sqrt{x-2}\) = 5 (đk \(x\) - 2 ≥ 0; \(x\ge2\))
\(x-2=25\)
\(x\) = 25 + 2
\(x\) = 27
Cho `x^2+3x-2=0`
`=>x^2+2.x. 3/2+9/4-17/4=0`
`=>(x+3/2)^2=17/4`
`=>(x+3/2)^2=(\sqrt{17}/2)^2` hoặc `(x+3/2)^2=([-\sqrt{17}]/2)^2`
`@TH1: x+3/2=\sqrt{17}/2=>x=[\sqrt{17}-3]/2`
`@TH2: x+3/2=[-\sqrt{17}]/2=>x=[-\sqrt{17}-3]/2`
Vây nghiệm của đa thức là `x=[\sqrt{17}-3]/2` hoặc `x=[-\sqrt{17}-3]/2`
\(\sqrt{x+1}\ge0\).Vậy GTNN của\(\sqrt{x+1}\)là 0 khi x + 1 = 0 => x = -1
\(\sqrt{x+1\ge}\)\(0\)Vậy GTNN của\(\sqrt{x}+1\)là 0 khi x + 1 = 0 => x = -1
a, thay x=-2;x=6;x=-4 vào ta được:
f(-2)=-2*2=-4
f(6)=2*6=12
f(-4)=-4*2=-8
b,khi y=6 thì x=6/2=3
khi y=8 thì x=8/2=4
c,khi x=2 thì y=2*2=4
khĩ=5 thì y=2*5=10
a, Ta có : f[32]=2⋅32=3f[32]=2⋅32=3
f[−12]=2⋅[−12]=−1f[−12]=2⋅[−12]=−1
b, f(x)=−4f(x)=−4
⇔2x=−4⇔2x=−4
⇔x=(−4):2=−2
1/ \(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}vàx+y-z=-21\)
-Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y-z}{6+4-3}=\frac{-21}{7}=-3\)
-Suy ra: \(\frac{x}{6}=-3\Rightarrow x=-18\)
\(\frac{y}{4}=-3\Rightarrow y=-12\)
\(\frac{z}{3}=-3\Rightarrow z=-9\)
vậy x=-18;y=-12;z=-9
2) a/y=f(x)=x^2-8
\(\Rightarrow\)y= f(3)=3^2-8=1
\(\Rightarrow\)y=f(-2)=(-2)^2-8=-4
vậy f(3)=1;f(-2)=-4
b/y=17=x^2-8
x^2-8=17
x^2=17+8
x^2=25
x^2=5^2
x=5
vậy x=5