Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10=\left[x^3+y^3+3xy\left(x+y\right)\right]-2\left(x^2+2xy+y^2\right)+3\left(x+y\right)+10=\left(x+y\right)^3-2\left(x+y\right)^2+3\left(x+y\right)+10=5^3-2.5^2+3.5+10=100\)
P = 3x2 - 2x + 3y2 - 2y + 6xy - 100
= (3x2 + 6xy + 3y2) - (2x + 2y) - 100
= 3(x2 + 2xy + y2) - 2(x + y) - 100
= 3(x + y)2 - 2.5 - 100
= 3. 52 -10 - 100
= 75 - 10 - 100 = -35
Q = x3 + y3 - 2x2 - 2y2 + 3xy(x + y) - 4xy + 3(x+y) +10
= x3 + y3 - 2x2 - 2y2 + 3x2y + 3xy2 - 4xy + 3.5 + 10
= (x3 + 3x2y + 3xy2 + y3) - (2x2 + 4xy + 2y2) + 15 + 10
= (x + y)3 - 2(x2 + 2xy + y2) + 25
= 53 - 2(x + y)2 +25
= 125 - 2. 52 + 25
= 125 - 50 + 25 = 100
\(a,P=3x^2-2x+3y^2-2y+6xy-100\)
\(P=3\left(x^2+y^2\right)-\left[2\left(x+y\right)\right]+6xy-100\)
\(P=3\left(x^2+y^2+2xy-2xy\right)-2.5+6xy-100\)
\(P=3\left(x+y\right)^2-6xy-10+6xy-100\)
\(P=3.25-10-100\)
\(P=-35\)
\(b,Q=x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
\(Q=\left(x+y\right)\left(x^2-xy+y^2\right)-2\left(x^2+y^2+2xy-2xy\right)+3xy.5-4xy+3.5+10\)\(Q=5.\left(x^2+y^2+2xy-3xy\right)-2\left(x+y\right)^2+4xy+15xy-4xy+25\)
\(Q=5.5-15xy-2.25+15xy+25\)
\(Q=25-50+25=0\)
a) P= 3x2 -2x + 3y2-2y + 6xy -100
= (3x2+ 3y2 + 6xy) - 2(x+y) -100
=3(x2 + y2 +2xy) - 2(x+y) -100
=3(x+y)2 - 2(x+y) -100
=3 . 52 -2 .5 -100
=35
b) Q=x3 + y3 -2x2 -2y2 + 3xy (x+y) -4xy + 3(x+y) + 10
=(x3 +y3) + 3xy (x+y) + 3(x+y) -4xy -2x2 -2y2 + 10
=(x+y) (x2 -xy +y2 ) + 3xy (x+y) + 3 (x+y) - 2 (2xy + x2 +y2 ) + 10
=(x+y) (x2 -xy +y2 + 3xy ) + 3(x+y) -2 (2xy + x2 + y2 ) + 10
=(x+y) (x2 +2xy +y2 ) + 3(x+y) - 2(x+y)2 + 10
= (x+y)3 + 3(x+y) - 2 (x+y)2 + 10
=53 + 3.5 -2. 52+ 10
=100
3x^2+3y^2+4xy-2x+2y+2=0
=>2x^2+4xy+2y^2+x^2-2x+1+y^2+2y+1=0
=>x=1 và y=-1
M=(1-1)^2017+(1-2)^2018+(-1+1)^2015=1
\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)
\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)
\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)
Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)
P = 3x2 - 2x + 3y2 - 2y + 6xy - 100
= 3( x2 + 2xy + y2 ) - 2( x + y ) - 100
= 3( x + y )2 - 2( x + y ) - 100
Với x + y = 5
=> P = 3.52 - 2.5 - 100 = 75 - 10 - 100 = -35
Q = x3 + y3 - 2x2 - 2y2 + 3xy( x + y ) - 4xy + 3( x + y ) + 10
= x3 + y3 - 2x2 - 2y2 + 3x2y + 3xy2 - 4xy + 3( x + y ) + 10
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 2x2 + 4xy + 2y2 ) + 3( x + y )
= ( x + y )3 - 2( x2 + 2xy + y2 ) + 3( x + y ) + 10
= ( x + y )3 - 2( x + y )2 + 3( x + y ) + 10
Với x + y = 5
=> Q = 53 - 2.52 + 3.5 + 10 = 100
a. \(P=3x^2-2x+3y^2-2y+6xy-100\)
\(\Leftrightarrow P=\left(3x^2+6xy+3y^2\right)-\left(2x+2y\right)-100\)
\(\Leftrightarrow P=3\left(x+y\right)^2-2\left(x+y\right)-100\)
\(\Leftrightarrow P=3.5^2-2.5-100\)
\(\Leftrightarrow P=-35\)
b. \(Q=x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
\(\Leftrightarrow Q=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(2x^2+4xy+2y^2\right)+3\left(x+y\right)+10\)
\(\Leftrightarrow Q=\left(x+y\right)^3-2\left(x+y\right)^2+3\left(x+y\right)+10\)
\(\Leftrightarrow Q=5^3-2.5^2+3.5+10\)
\(\Leftrightarrow Q=100\)
a) \(P=3\left(x^2+2xy+y^2\right)-2\left(x+y\right)-100\)
\(P=3\left(x+y\right)^2-2.5-100\)
\(P=3.5^2-110\)
\(P=-35\)
b) \(Q=\left[x^3+y^3+3xy\left(x+y\right)\right]-2\left(x^2+2xy+y^2\right)+3.5+10\)
\(Q=\left(x+y\right)^3-2\left(x+y\right)^2+25\)
\(Q=5^3-2.5^2+25\)
\(Q=100\)