Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left\{{}\begin{matrix}2x+y=5m-1\\x-2y=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+y=5m-1\\x=m+2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\left(m+2y\right)+y=5m-1\\x=m+2y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m+4y+y-5m=-1\\x=m+2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5y-3m=-1\\x=m+2y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5y=3m-1\\x=m+2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3m-1}{5}\\x=m+2\cdot\dfrac{3m-1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5m}{5}+\dfrac{6m-2}{5}=\dfrac{11m-2}{5}\\y=\dfrac{3m-1}{5}\end{matrix}\right.\)
Để hệ phương trình có nghiệm thỏa mãn \(x^2-2y^2=-2\) thì \(\left(\dfrac{11m-2}{5}\right)^2-2\cdot\left(\dfrac{3m-1}{5}\right)^2=-2\)
\(\Leftrightarrow\dfrac{121m^2-44m+4}{25}-2\cdot\dfrac{9m^2-6m+1}{25}=-2\)
\(\Leftrightarrow\dfrac{121m^2-44m+4}{25}-\dfrac{18m^2-12m+2}{25}=-2\)
\(\Leftrightarrow\dfrac{103m^2-32m+2}{25}=\dfrac{-50}{25}\)
\(\Leftrightarrow103m^2-32m+2+50=0\)
\(\Leftrightarrow103m^2-32m+52=0\)
\(\Delta=\left(-32\right)^2-4\cdot103\cdot52=-20400\)
Vì \(\Delta< 0\) nên phương trình vô nghiệm
Vậy: Không có giá trị nào của m để hệ phương trình có nghiệm thỏa mãn \(x^2-2y^2=-2\)
+) Với m = 0 ta có nghiệm x = 2 > 0 và y = -1/2 < 0 ( thỏa mãn)
+) Với m khác 0
Ta có: \(\hept{\begin{cases}x+my=2\\mx-2y=1\end{cases}}\)
<=> \(\hept{\begin{cases}mx+m^2y=2m\\mx-2y=1\end{cases}}\)
<=> \(\hept{\begin{cases}m^2y+2y=2m-1\\x=2-my\end{cases}}\)
<=> \(\hept{\begin{cases}y=\frac{2m-1}{m^2+2}\\x=2-\frac{2m^2-m}{m^2+2}=\frac{4+m}{m^2+2}\end{cases}}\)
Với đk: x > 0 ; y < 0 khi đó \(\hept{\begin{cases}\frac{2m-1}{m^2+2}< 0\\\frac{4+m}{m^2+2}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< \frac{1}{2}\\m>-4\end{cases}}\Leftrightarrow-4< m< \frac{1}{2}\)
vì m khác 0 nên ta có: \(\hept{\begin{cases}-4< m< \frac{1}{2}\\m\ne0\end{cases}}\)
Kết hợp 2 TH ta có: -4 < m <1/2
Δ=(-m)^2-4(2m-4)
=m^2-8m+16=(m-4)^2>=0
=>Phương trình luôn có hai nghiệm
|x1|+|x2|=3
=>x1^2+x2^2+2|x1x2|=9
=>m^2-2(2m-4)+2|2m-4|=9
TH1: m>=2
=>m^2=9
=>m=3(nhận) hoặc m=-3(loại)
TH2: m<2
=>m^2-4(2m-4)=9
=>m^2-8m+16-9=0
=>m=1(nhận) hoặc m=7(loại)
Ta có: \(\left\{{}\begin{matrix}x^2+2y+1=0\\y^2+2z+1=0\\z^2+2x+1=0\end{matrix}\right.\)
\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)
\(\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)
\(\Rightarrow x=y=z=-1\)(do \(\left(x+1\right)^2,\left(y+1\right)^2,\left(z+1\right)^2\ge0\forall x,y,z\))
a) \(A=x^{2020}+y^{2020}+z^{2020}=\left(-1\right)^{2020}+\left(-1\right)^{2020}+\left(-1\right)^{2020}=1+1+1=3\)
b) \(B=\dfrac{1}{x^{2020}}+\dfrac{1}{y^{2020}}+\dfrac{1}{z^{2020}}=\dfrac{1}{\left(-1\right)^{2020}}+\dfrac{1}{\left(-1\right)^{2020}}+\dfrac{1}{\left(-1\right)^{2020}}=\dfrac{1}{1}+\dfrac{1}{1}+\dfrac{1}{1}=3\)
\(\hept{\begin{cases}x^3-6x^2y+9xy^2-4y^3=0\left(1\right)\\\sqrt{x-y}+\sqrt{x+y}=2\left(2\right)\end{cases}}\)
ĐKXĐ: \(x\ge y\ge0\)
ta có: (1)\(\Leftrightarrow\left(x^3-y^3\right)-3y^3-9x^2y+3x^2y+9xy^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)+3y\left(x^2-y^2\right)-9xy\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2+3y\left(x+y\right)-9xy\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-5xy+4y^2\right)=0\)
\(\orbr{\begin{cases}x=y\\x^2-5xy+4y^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=y\\\left(x-y\right)\left(x-4y\right)=0\end{cases}}}\)\(\Leftrightarrow\orbr{\begin{cases}x=y\\x=4y\end{cases}}\)
* Thay x=y vào phương trình (2), ta được: \(\sqrt{y-y}+\sqrt{2y}=2\Leftrightarrow y=2\Rightarrow x=y=2\)
* thay x=4y vào phương trình (2), ta được: \(\sqrt{4y-y}+\sqrt{4y+y}=2\)
\(\Leftrightarrow y=8-2\sqrt{15}\)\(\Rightarrow x=32-8\sqrt{15}\)
Vậy.......
\(\Leftrightarrow\left\{{}\begin{matrix}x^3+2y^2-4y+3=0\\2x^2+2x^2y^2-4y=0\left(1\right)\end{matrix}\right.\Rightarrow}x^3+2y^2-4y-2x^2-2x^2y^2+4y=0\Rightarrow x^3+1-2x^2y^2+2y^2-2x^2+2=0\Rightarrow\left(x+1\right)\left(x^2-x+1\right)-2y^2\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(x^2-x+1-2xy^2+2y^2-2x+2\right)=0\Rightarrow x=-1\)Thay x=-1 vào (1) ta được y2-2y+1=0⇒ (y-1)2=0⇒y-1=0⇒y=1
Do đó Q=x2+y2=(-1)2+12=2