K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2019

đề sai, sửa

A=x2+2xy+y2-5x-5y+1

A = ( x + y )2 = 5 ( x - y ) + 1

A = 9 = 5( x - y ) + 1

A = 8 = 5 ( x - y )

A = 1,6 = x + y

=> A = 1,6 

chắc sai 

cứ tham khảo 

24 tháng 7 2016

1)   \(x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)

\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)

2)\(5x-5y+ax-ay=5\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(a+5\right)\)

\(a^3-a^2x-ay+xy=a^2\left(a-x\right)-y\left(a-x\right)=\left(a-x\right)\left(a^2-y\right)\)

9 tháng 8 2017

Bài 8: Cho a+b= 1 nha ( mk thiếu đề)

9 tháng 8 2017

Bài 1:

Theo bài ra ta có:

\(\left(x-y\right)^2=x^2-2xy+y^2\)

\(=\left(5-y\right)^2-2\times2+\left(5-x\right)^2\)

\(=5^2-2\times5y+y^2-4+5^2-2\times5x+x^2\)

\(=25-10y+y^2+25-10x+x^2-4\)

\(=\left(25+25\right)-\left(10x+10y\right)+x^2+y^2-4\)

\(=50-10\left(x+y\right)+x^2+2xy+y^2-2xy-4\)

\(=50-10\times5+\left(x+y\right)^2-2\times2-4\)

\(=50-50+5^2-4-4\)

\(=25-8=17\)

Vậy giá trị của \(\left(x-y\right)^2\)là 17

25 tháng 7 2019

#)Giải :

a)\(A=x^2+2xy+y^2-4x-4y+1=\left(x^2+2xy+y^2\right)-4\left(x+y\right)+1=\left(x+y\right)^2-4\left(x+y\right)+1\)

Thay x + y = 3 vào biểu thức, ta được : \(A=3^2-4.3+1=-2\)

25 tháng 7 2019

hãy giải hết giúp mình vs

7 tháng 8 2016

A= x2 + y2 - 5x - 5y + 2xy + 2009

= (x2 + 2xy + y2) - 5(x + y) + 2009

= (x + y)2 - 5(x + y) + 2009

= 102 - 5.10 + 2009

= 2059

7 tháng 8 2016

\(x^2+y^2-5x-5y+2xy+2009=\left(x^2+2xy+y^2\right)-5\left(x+y\right)+2009\)

\(=\left(x+y\right)^2-5\left(x+y\right)+2009\)

thay x + y = 10 đc: 

102 - 5*10 + 2009 = 2059

25 tháng 7 2019

\(A=x^2+2xy+y^2-4x-4y+1=\left(x+y\right)^2-4\left(x+y\right)+1=3^2-12+1=-2\)

\(B=x^2-2xy+y^2-5x+5y+6=\left(x-y\right)^2-5\left(x-y\right)+6=7^2-5.7+6=20\)

25 tháng 7 2019

a)Ta có

A=\(x^2+2xy+y^2-4x-4y+1\)

=>A=\(\left(x+y\right)^2-4\left(x+y\right)+1\)

Mà x+y=3 nên

A=\(3^2-4\cdot3+1\)

A=-2

b)Ta có:

B=\(x^2-2xy+y^2-5x+5y+6\)

B=\(\left(x-y\right)^2-5\left(x-y\right)+6\)

Mà x-y=7 nên

B=\(7^2-5\cdot7+6\)

B=20

29 tháng 6 2017

thu gọn hết sẽ thấy sự giống nhau

1 tháng 9 2020

Bài 1 : 

a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)

TH1 : \(x-3=2\Leftrightarrow x=5\)

TH2 : \(x-3=-2\Leftrightarrow x=1\)

b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)

TH1 : \(x-6=0\Leftrightarrow x=6\)

TH2 : \(x+4=0\Leftrightarrow x=-4\)

c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)

\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)

d, tương tự 

1 tháng 9 2020

Bài 2 :

 \(x^2+2xy+y^2-6x-6y-5=\left(x+y\right)^2-6\left(x+y\right)-5\)

Thay x + y = -9 ta có : 

\(\left(-9\right)^2-6\left(-9\right)-5=130\)

19 tháng 12 2018

a,x2-z2+y2-2xy

=(x2-2xy+y2)-z2

=(x-y)2-z2

b,-x-y2+x2-y

=(x2-y2)-(x+y)

=(x-y)(x+y)-(x+y)

=(x+y)(x-y-1)

c,x2-2xy-4z2+y2

=(x2-2xy+y2)-(2z)2

=(x-y)2-(2z)2

=(x-y-2z)(x-y+2z)

d,x(x+y)-5x-5y

=x(x+y)-5(x+y)

=(x+y)(x-5)

e, x2 - 5x + 5y - y2

=(x2-y2)-5(x-y)

=(x+y)(x-y)-5(x+y)

=(x+y)(x-y-5)

f, x2 + 4x + 3

=x2+x+3x+3

=x(x+1)+3(x+1)

=(x+1)(x+3)

g, 10x ( x - y) - 8 (y - x)

=10x(x-y)+8(x-y)

=2(x-y)(5x+4)

h, x2 - 3x + 2

=x2-x-2x+2

=x(x+1)-2(x-1)

=(x+1)(x-2)