Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔIAC vuông tại I và ΔABC vuông tại A có
góc C chung
Do đó: ΔIAC∼ΔABC
b: Xét ΔABC vuông tại A có AI là đường cao
nên \(AI^2=IB\cdot IC\)
1: AC=20cm
\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{15\cdot20}{2}=150\left(cm^2\right)\)
2: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
3: Xét tứ giác AFDH có
AF//DH
AF=DH
Do đó: AFDH là hình bình hành
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{ACB}\) chung
Do đó: ΔABC đồng dạng với ΔHAC
b: Xét ΔKHB vuông tại K và ΔKAH vuông tại K có
\(\widehat{KHB}=\widehat{KAH}\left(=90^0-\widehat{B}\right)\)
Do đó: ΔKHB đồng dạng với ΔKAH
=>\(\dfrac{KH}{KA}=\dfrac{KB}{KH}\)
=>\(KH^2=KA\cdot KB\)
c: Ta có: ΔAHC vuông tại H
=>\(HC^2+HA^2=AC^2\)
=>\(HA^2=10^2-8^2=36\)
=>\(HA=\sqrt{36}=6\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(HB=\dfrac{6^2}{8}=4,5\left(cm\right)\)
BC=BH+CH
=4,5+8
=12,5(cm)
Xét ΔABC có AH là đường cao
nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot12,5\cdot6=3\cdot12,5=37,5\left(cm^2\right)\)
a, Vì \(\widehat{AMI}=\widehat{ANI}=\widehat{MAN}=90^0\) nên AMIN là hcn
b, Vì AI là trung tuyến ứng ch BC nên \(AI=\dfrac{1}{2}BC=\dfrac{25}{2}\left(cm\right)\)
Áp dụng PTG: \(AB=\sqrt{BC^2-AC^2}=15\left(cm\right)\)
Vậy \(S_{ABC}=\dfrac{1}{2}AB\cdot AC=150\left(cm^2\right)\)
a)sét tứ giác AMIN có
góc INA=góc IMA=900
=> tứ giác AMIN là hình chữ nhật
b)sét tam giác ABC vuông góc tại A
ta có:AI=1/2 BC(đường trung tuyến tam giác ngược)
=>AI=BC/2=25/2=12,5(cm)
ta có ab^2=bc^2-ac^2(định lí py-ta-go)
=25^2-20^2=>ab==15(cm)
vậy Sabc=1/2ab.ac=1/215.20=150(cm)2 xem cách làm cua minh dk