K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔIAC vuông tại I và ΔABC vuông tại A có

góc C chung

Do đó: ΔIAC∼ΔABC

b: Xét ΔABC vuông tại A có AI là đường cao

nên \(AI^2=IB\cdot IC\)

1: AC=20cm

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{15\cdot20}{2}=150\left(cm^2\right)\)

2: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó: ADHE là hình chữ nhật

3: Xét tứ giác AFDH có

AF//DH

AF=DH

Do đó: AFDH là hình bình hành

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

ĐIểm $M$ là điểm nào thế bạn? 

 

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

\(\widehat{ACB}\) chung

Do đó: ΔABC đồng dạng với ΔHAC

b: Xét ΔKHB vuông tại K và ΔKAH vuông tại K có

\(\widehat{KHB}=\widehat{KAH}\left(=90^0-\widehat{B}\right)\)

Do đó: ΔKHB đồng dạng với ΔKAH

=>\(\dfrac{KH}{KA}=\dfrac{KB}{KH}\)

=>\(KH^2=KA\cdot KB\)

c: Ta có: ΔAHC vuông tại H

=>\(HC^2+HA^2=AC^2\)

=>\(HA^2=10^2-8^2=36\)

=>\(HA=\sqrt{36}=6\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(HB=\dfrac{6^2}{8}=4,5\left(cm\right)\)

BC=BH+CH

=4,5+8

=12,5(cm)

Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot12,5\cdot6=3\cdot12,5=37,5\left(cm^2\right)\)

6 tháng 11 2021

a, Vì \(\widehat{AMI}=\widehat{ANI}=\widehat{MAN}=90^0\) nên AMIN là hcn

b, Vì AI là trung tuyến ứng ch BC nên \(AI=\dfrac{1}{2}BC=\dfrac{25}{2}\left(cm\right)\)

Áp dụng PTG: \(AB=\sqrt{BC^2-AC^2}=15\left(cm\right)\)

Vậy \(S_{ABC}=\dfrac{1}{2}AB\cdot AC=150\left(cm^2\right)\)

7 tháng 11 2021

a)sét tứ giác AMIN có

góc INA=góc IMA=900

=> tứ giác AMIN là hình chữ nhật

b)sét tam giác ABC vuông góc tại A 

ta có:AI=1/2 BC(đường trung tuyến tam giác ngược)

=>AI=BC/2=25/2=12,5(cm)

ta có ab^2=bc^2-ac^2(định lí py-ta-go)

                        =25^2-20^2=>ab=square root of 225=15(cm)

vậy Sabc=1/2ab.ac=1/215.20=150(cm)2 xem cách làm cua minh dk

2 tháng 5 2017

kết bạn đi ,rùi mình nói

2 tháng 5 2017

 dung ác quá