K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: AC=20cm

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{15\cdot20}{2}=150\left(cm^2\right)\)

2: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó: ADHE là hình chữ nhật

3: Xét tứ giác AFDH có

AF//DH

AF=DH

Do đó: AFDH là hình bình hành

30 tháng 11 2018

ứ giác HDAE có ^A=^D=^E=90 độ 
nên HDAE là hình chữ nhật, suy ra AH=DE. 

b) ∆BDH vuông tại D có DP là trung tuyến nên PD=PH 
suy ra ∆PDH cân tại P nên ^PDH=PHD (1) 
Do ADHE là hình chữ nhật nên ^ODH=^OHD (2) 
công vế với vế của (1) và (2) ta có: 
^PDH+^ODH=^PHD+^OHD=^OHP=90 độ 
Hay ^PDO=90 độ, nên PD┴DE. (3) 
Chứng minh tương tự cuãng có QE┴DE (4) 
từ (3) và (4) suy ra PD//QE 
nên DEQP là hình thang vuông. 

c) BO và AH là đường cao của ∆ABQ nên O là trực tâm 
của ∆ABQ. ADHE là hình chữ nhật nên S(ADHE)=2S(DHE) (5) 
d)∆BDH vuông tại D có DP là trung tuyến 
nên S(BDH)=2S(DPH) (6) 
tương tự S(HAC) = 2S(HEQ) (7) 
Cộng vế với vế của (5), (6), (7) 
thì S(ABC)=2S(DEQP)

30 tháng 11 2018

dạ em cám ơn chị ạ

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: ADHE là hình chữ nhật

=>AD//HE và AD=HE; AE//HD và AE=HD

AE=HD

A\(\in\)EF

Do đó: HD//AF

AE=HD

AE=AF

Do đó: HD=AF

Xét tứ giác AHDF có

AF//DH

AF=DH

Do đó: AHDF là hình bình hành

c:

AC và AF là hai tia đối nhau

mà E\(\in\)AC

nên AE và AF là hai tia đối nhau

=>A nằm giữa E và F

mà AE=AF

nên A là trung điểm của EF

Xét tứ giác EBFM có

A là trung điểm chung của EF và BM

nên EBFM là hình bình hành

Hình bình hành EBFM có EF\(\perp\)BM

nên EBFM là hình thoi

3 tháng 12 2023

Bạn ơi có hình vẽ k ạ

4 tháng 1 2022

CHỊU TỰ TÍNH NHA HỎI NGƯỜI NHÀ HOẶC TRA  GOOGLE

4 tháng 1 2022

tui cũng chịu

4 tháng 1 2022

ôi mình chịu thôi :((

3 tháng 12 2018

1a/IM vuông góc AB=>AMI=90 do

IN vuông góc AC=>ANI=90 do

△ABC vuông tại A=>BAC=90 do

=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật

1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)

Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)

Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi

3 tháng 12 2018

2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H

=> AM=MB VA EM=MH hay AB giao voi EH tai TD M

=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn

2b/Co AEBH la hcn=>EH=AB

+) Mà AB=AC=>EH=AC(1)

+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.

Co goc BAH=1/2 EAH ; góc AHE=1/2AHB

Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.

Mà 2 góc này ở vị trí SLT=> EH//AC(2)

Từ (1) va (2)=>tg AEHC la hbh