Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ứ giác HDAE có ^A=^D=^E=90 độ
nên HDAE là hình chữ nhật, suy ra AH=DE.
b) ∆BDH vuông tại D có DP là trung tuyến nên PD=PH
suy ra ∆PDH cân tại P nên ^PDH=PHD (1)
Do ADHE là hình chữ nhật nên ^ODH=^OHD (2)
công vế với vế của (1) và (2) ta có:
^PDH+^ODH=^PHD+^OHD=^OHP=90 độ
Hay ^PDO=90 độ, nên PD┴DE. (3)
Chứng minh tương tự cuãng có QE┴DE (4)
từ (3) và (4) suy ra PD//QE
nên DEQP là hình thang vuông.
c) BO và AH là đường cao của ∆ABQ nên O là trực tâm
của ∆ABQ. ADHE là hình chữ nhật nên S(ADHE)=2S(DHE) (5)
d)∆BDH vuông tại D có DP là trung tuyến
nên S(BDH)=2S(DPH) (6)
tương tự S(HAC) = 2S(HEQ) (7)
Cộng vế với vế của (5), (6), (7)
thì S(ABC)=2S(DEQP)
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: Xét tứ giác EMFB có
A là trung điểm chung của EF và MB
=>EMFB là hình bình hành
Hình bình hành EMFB có EF\(\perp\)MB
nên EMFB là hình thoi
c: EMFB là hình thoi
=>EM//FB và EM=FB(1)
Ta có: P là trung điểm của FB
=>\(PF=PB=\dfrac{BF}{2}\left(2\right)\)
Ta có: Q là trung điểm của EM
=>\(QE=QM=\dfrac{EM}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra PF=PB=QE=QM
Xét tứ giác MQBP có
MQ//BP
MQ=BP
Do đó: MQBP là hình bình hành
=>MB cắt QP tại trung điểm của mỗi đường
mà A là trung điểm của MB
nên A là trung điểm của PQ
=>P,A,Q thẳng hàng
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
b: Xét tứ giác AEDF có
AE//DF
AE=DF
Do đó: AEDF là hình bình hành
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
b: Xét tứ giác AFDH có
DH//AF
DH=AF(=AE)
Do đó: AFDH là hình bình hành
A C B H M D E F I J
a) Xét tứ giác AHBD có MB = MA; MD = MH nên nó là hình bình hành (dhnb).
Lại có \(\widehat{BHA}=90^o\) nên AHBD là hình chữ nhật (dhnb).
b) Do AHBD là hình chữ nhật nên AD song song và bằng HB.
Lại có HB = HE nên AD song song và bằng HE.
Xét tứ giác ADHE có AD song song và bằng HE nên nó là hình bình hành (dhnb)
c) Lấy J là trung điểm AF.
Do AB và EF cùng vuông góc với AC nên BAFE là hình thang vuông.
Lại có H, J là trung điểm các cạnh bên nên HJ là đường trung bình của hình thang.
Vậy nên HJ // AB // EF hay \(HJ\perp AF\)
Xét tam giác AHF có HJ là trung tuyến đồng thời đường cao nên nó là tam giác cân.
Vậy thì HA = HF.
d) Xét tam giác vuông EFC có FI là trung tuyến ứng với cạnh huyền nên FI = IC hay \(\widehat{IFC}=\widehat{ICF}\)
Lại có \(\widehat{ICF}=\widehat{BAH}\) (Cùng phụ với góc HAC)
Nên \(\widehat{IFC}=\widehat{BAH}\)
Ta cũng có \(\widehat{HFE}=\widehat{JHF}\) (Hai góc so le trong)
\(\widehat{JHF}=\widehat{JHA}\) (HJ là phân giác)
\(\widehat{JHA}=\widehat{BAH}\) (Hai góc so le trong)
nên \(\widehat{HFE}=\widehat{BAH}\)
Vậy thì \(\widehat{IFC}=\widehat{HFE}\)
Từ đó ta có : \(\widehat{IFC}+\widehat{EFI}=\widehat{HFE}+\widehat{EFI}\Rightarrow\widehat{HFI}=\widehat{EFC}=90^o\)
Hay \(HF\perp FI\)
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
b: ADHE là hình chữ nhật
=>AD//HE và AD=HE; AE//HD và AE=HD
AE=HD
A\(\in\)EF
Do đó: HD//AF
AE=HD
AE=AF
Do đó: HD=AF
Xét tứ giác AHDF có
AF//DH
AF=DH
Do đó: AHDF là hình bình hành
c:
AC và AF là hai tia đối nhau
mà E\(\in\)AC
nên AE và AF là hai tia đối nhau
=>A nằm giữa E và F
mà AE=AF
nên A là trung điểm của EF
Xét tứ giác EBFM có
A là trung điểm chung của EF và BM
nên EBFM là hình bình hành
Hình bình hành EBFM có EF\(\perp\)BM
nên EBFM là hình thoi
Bạn ơi có hình vẽ k ạ