K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2021

vì dùng máy tính nên ko vẽ hình đc thông cảm !!

a) giả thiết 

Δ ABC cân tại A 

AK là tia đối của AB

BK=BC

KH⊥BC(H∈BC)

KH cắt AC tại E

Kết luận 

KH=AC

BE là tia phân giác của góc ABC

b) xét tam giác BAC và tam giác BHK có

\(\widehat{B} \)  Chung

KH=BC (gt)

\(\widehat{BAC}=\widehat{BHK}=90\) (gt)

 tam giác BAC = tam giác BHK (ch-gn)

=>KH=AC(2 góc tương ứng )

b)Xét Δ KBC có BK=BC(gt)

=> tam giác KBC cân tại B

Mà KH⊥BC=> KH là đường cao

AC⊥AB =>AC⊥KB(K∈AB)=>AC là đường cao 

Mà AC giao vs KH tại E

=> E là trực tâm của tam giác 

=> BE là đường cao (tc 3 đg cao trong tam giác)

=> BE là giân giác của góc \(\widehat{KBC}\)

=>BE là giân giác của góc \(\widehat{ABC} \) (A∈BK)

5 tháng 5 2021

Giúp mình giải với ạ 🤗

a: BC=5cm

b: XétΔBHK vuông tại H và ΔBAC vuông tại A có

BK=BC

góc HBK chung

Do đó: ΔBHK=ΔBAC

Suy ra: BH=BA

c: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

BA=BH

Do đó: ΔABE=ΔHBE

Suy ra: \(\widehat{ABE}=\widehat{HBE}\)

hay BE là phân giác của góc KBC

Ta có: ΔBKC cân tại B

mà BE là phân giác

nên BE là đường cao

19 tháng 5 2022

a. Xét tam giác ABC theo định lý PY - ta - go ta có :

AB2 + AC2 = BC2

=> 32 + 42 = BC2

=> 9 + 16 = BC2

=> 25 = BC2

=> BC = 5cm

a: Xét ΔBHK vuông tại H và ΔBAC vuông tại A co

BK=BC

góc KBH chung

=>ΔBHK=ΔBAC

=>KH=AC

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

BA=BH

=>ΔBAE=ΔBHE

=>góc ABE=góc HBE

=>BE là phân giác của góc ABC

c: AE=EH

EH<EC

=>AE<EC

3 tháng 12 2021

chịu m ko bt lm

a: Sửa đề: AC=12cm

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=5^2+12^2=169\)

=>\(BC=\sqrt{169}=13\left(cm\right)\)

b:

Ta có: AB và AE là hai tia đối nhau

=>A nằm giữa B và E

mà AB=AE

nên A là trung điểm của BE

Xét ΔCBE có

CA là đường cao

CA là đường trung tuyến

Do đó: ΔCBE cân tại C

c: Ta có: ΔCBE cân tại C

mà CA là đường cao

nên CA là phân giác của góc ECB

Xét ΔCIA vuông tại I và ΔCHA vuông tại H có

CA chung

\(\widehat{ICA}=\widehat{HCA}\)

Do đó: ΔCIA=ΔCHA

d: Ta có: ΔCIA=ΔCHA

=>CI=CH

Xét ΔCEB có \(\dfrac{CI}{CE}=\dfrac{CH}{CB}\)

nên HI//EB

22 tháng 12 2021

\(a,\)(Sửa đề: \(\Delta ABD=\Delta EBD\))

Vì \(\begin{cases} AB=BE\\ \widehat{ABD}=\widehat{EBD}\\ BD\text{ chung} \end{cases}\) nên \(\Delta ABD=\Delta EBD(c.g.c)\)

\(\Rightarrow \widehat{BAD}=\widehat{BED}=90^0\\ \Rightarrow DE\bot BC\)

\(b,\Delta ABD=\Delta EBD(cmt)\\ \Rightarrow AD=DE\Rightarrow D\in\text{trung trực }AE\\ AB=BE\Rightarrow B\in \text{trung trực }AE\\ \Rightarrow BD\text{ là trung trực }AE\)

\(c,\begin{cases} \widehat{MAD}=\widehat{CED}=90^0\\ AD=DE\\ AM=EC \end{cases}\\\Rightarrow \Delta ADM=\Delta EDC(c.g.c)\\ \Rightarrow MC=MD\)

\(d,\Delta ADM=\Delta EDC(cmt)\\ \Rightarrow \widehat{ADM}=\widehat{EDC}\)

Mà 2 góc này ở vị trí đối đỉnh và \(A,D,C\) thẳng hàng nên \(M,D,E\) thẳng hàng