Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đkđb thì $AI^2=AD.AE$. Vì vậy, nếu muốn $AI^2=DE.AE$ thì $AD=DE$ (điều này vô lý vì $AD<DE$ theo tính chất cạnh huyền trong tam giác vuông.
Xét tứ giác ADHE có:
\(\widehat{BAC}=\widehat{ADH}=\widehat{AEH}=90^0\)
=> Tư giác ADHE là hình chữ nhật
\(\Rightarrow DE=AH\left(1\right)\)
Áp dụng HTL trong tam giác ABC vuông tại A có đường cao AH
\(AH^2=HB.HC\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow DE^2=HB.HC\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH^2=HB\cdot HC\left(1\right)\)
Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
Suy ra: AH=DE(2)
Từ (1) và (2) suy ra \(DE^2=HB\cdot HC\)
a: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=AB^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\\BH=\dfrac{9^2}{15}=5.4\left(cm\right)\end{matrix}\right.\)
b:
ΔAHB vuông tại H có HD là đường cao
nên \(HD\cdot AB=HA\cdot HB\)
ΔAHC vuông tại H có HE là đường cao
nên \(HE\cdot AC=HA\cdot HC\)
\(HD\cdot AB+HE\cdot AC\)
\(=HA\cdot HB+HA\cdot HC=HA\cdot\left(HB+HC\right)\)
\(=HA\cdot BC=AB\cdot AC\)
c: Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
ΔABC vuông tại A có AM là trung tuyến
nên AM=MB=MC
\(\widehat{IEA}+\widehat{IAE}=\widehat{DEA}+\widehat{IAC}\)
\(=\widehat{DHA}+\widehat{MCA}\)
\(=\widehat{ABC}+\widehat{ACB}=90^0\)
=>AM vuông góc DE tại I
ΔADE vuông tại A có AI là đường cao
nên \(\dfrac{1}{AI^2}=\dfrac{1}{AE^2}+\dfrac{1}{AD^2}\)
a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow AH^2=1.8\cdot3.2=5.76\)
hay AH=2,4cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=1.8\cdot5=9\\AC^2=3.2\cdot5=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=3\left(cm\right)\\AC=4\left(cm\right)\end{matrix}\right.\)
a: BC=BH+CH
=2+8
=10(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH=\sqrt{2\cdot8}=4\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AB=\sqrt{2\cdot10}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{8\cdot10}=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)
b: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
=>DE=AH
c: ΔHDB vuông tại D
mà DM là đường trung tuyến
nên DM=HM=MB
\(\widehat{EDM}=\widehat{EDH}+\widehat{MDH}\)
\(=\widehat{EAH}+\widehat{MHD}\)
\(=90^0-\widehat{C}+\widehat{C}=90^0\)
=>DE vuông góc DM