Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMHN có
AM//HN
AN//HM
Do đó: AMHN là hình bình hành
Hình bình hành AMHN có \(\widehat{MAN}=90^0\)
nên AMHN là hình chữ nhật
b: Ta có: AMHN là hình bình hành
=>HM//AN và HM=AN
Ta có: HM//AN
N\(\in\)AE
Do đó: HM//ND
Ta có: HM=NA
NA=ND
Do đó: HM=ND
Xét tứ giác MHDN có
MH//DN
MH=DN
Do đó: MHDN là hình bình hành
c: Gọi O là giao điểm của AH và NM
Ta có: ANHM là hình chữ nhật
=>AH=MN và AH cắt MN tại trung điểm của mỗi đường
=>O là trung điểm chung của AH và MN
Ta có: ΔAEH vuông tại E
mà EO là đường trung tuyến
nên \(EO=\dfrac{AH}{2}=\dfrac{MN}{2}\)
Xét ΔNEM có
EO là đường trung tuyến
\(EO=\dfrac{NM}{2}\)
Do đó: ΔNEM vuông tại E
=>NE\(\perp\)ME
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)
Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)
DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)
Từ (1) và (2) ⇒ MHDE là hình thang cân.
d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH
Xét ΔDIH và ΔKIA có
IH = IA
∠DIH = ∠AIK (đối đỉnh),
∠H1 = ∠A1(so le trong)
ΔDIH = ΔKIA (g.c.g)
⇒ ID = IK
Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành
⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC
xin lỗi anh(chị) em mới lớp 6 không giải đc
thật lòng xin lỗi :(((((
((((((((🙄)))))))))___________bn ghi như mình đi thì bn sẽ có cái nịt 👉👈!!!
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=21^2+28^2=1225\)
hay BC=35(cm)
Vậy: BC=35cm
Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
Suy ra: \(\dfrac{AH}{CA}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AH}{28}=\dfrac{21}{35}\)
hay AH=16,8(cm)
Vậy: BC=35cm; AH=16,8cm
a) Xét tứ giác AMHN có
\(\widehat{NAM}=90^0\)(\(\widehat{BAC}=90^0,N\in AC,M\in AB\))
\(\widehat{AMH}=90^0\left(HM\perp AB\right)\)
\(\widehat{ANH}=90^0\left(HN\perp AC\right)\)
Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
a: Xét tứ giác ACHE có
HE//AC
HE=AC
Do đó: ACHE là hình bình hành
b: Ta có: ACHE là hình bình hành
nên AE//HC và AE=HC
=>AE//HB và AE=HB
Xét tứ giác AEBH có
AE//BH
AE=BH
Do đó: AEBH là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AEBH là hình chữ nhật
a: Xét tứ giác AMHN có
AM//HN
AN//HM
Do đó: AMHN là hình bình hành
Hình bình hành AMHN có \(\widehat{MAN}=90^0\)
nên AMHN là hình chữ nhật
b: Ta có: AMHN là hình bình hành
=>HM//AN và HM=AN
Ta có: HM//AN
N\(\in\)AE
Do đó: HM//ND
Ta có: HM=NA
NA=ND
Do đó: HM=ND
Xét tứ giác MHDN có
MH//DN
MH=DN
Do đó: MHDN là hình bình hành
c: Gọi O là giao điểm của AH và NM
Ta có: ANHM là hình chữ nhật
=>AH=MN và AH cắt MN tại trung điểm của mỗi đường
=>O là trung điểm chung của AH và MN
Ta có: ΔAEH vuông tại E
mà EO là đường trung tuyến
nên \(EO=\dfrac{AH}{2}=\dfrac{MN}{2}\)
Xét ΔNEM có
EO là đường trung tuyến
\(EO=\dfrac{NM}{2}\)
Do đó: ΔNEM vuông tại E
=>NE\(\perp\)ME