Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xin lỗi anh(chị) em mới lớp 6 không giải đc
thật lòng xin lỗi :(((((
((((((((🙄)))))))))___________bn ghi như mình đi thì bn sẽ có cái nịt 👉👈!!!
a) Do HE ⊥ AB (gt)
⇒ ∠AEH = 90⁰
Do HF ⊥ AC (gt)
⇒ ∠AFH = 90⁰
Do ∆ABC vuông tại A (gt)
⇒ ∠EAF = 90⁰
Tứ giác AEHF có:
∠AEH = ∠AFH = ∠EAF = 90⁰
⇒ AEHF là hình chữ nhật
b) Do AEHF là hình chữ nhật (cmt)
⇒ HE = AF
Mà AF = FM (do A và M đối xứng qua F)
⇒ HE = FM
Do AEHF là hình chữ nhật (cmt)
⇒ HE // AF
⇒ HE // FM
Tứ giác EFMH có:
HE // FM (cmt)
HE = FM (cmt)
⇒ EFMH là hình bình hành
c) Do A và M đối xứng qua F (gt)
⇒ F là trung điểm của AM
Do D và H đối xứng qua F (gt)
⇒ F là trung điểm của DH
Do HF ⊥ AC (gt)
⇒ HD ⊥ AM
Tứ giác AHMD có:
F là trung điểm của AM (cmt)
F là trung điểm của DH (cmt)
⇒ AHMD là hình bình hành
Mà HD ⊥ AM (cmt)
⇒ AHMD là hình chữ thoi
⇒ AD // MH
Do EFMH là hình bình hành (cmt)
⇒ EF // MH
Mà AD // MH
⇒ EF // AD
Do ADMH là hình thoi (cmt)
⇒ AM là tia phân giác của ∠DAH
⇒ ∠DAM = ∠HAM
⇒ ∠DAC = ∠HAC
Do ADMH là hình thoi
⇒ AD = AH
Xét ∆ADC và ∆AHC có:
AD = AH (cmt)
∠DAC = ∠HAC (cmt)
AC là cạnh chung
⇒ ∆ADC = ∆AHC (c-g-c)
⇒ ∠ADC = ∠AHC = 90⁰ (hai góc tương ứng)
⇒ AD ⊥ DC
Mà EF // AD (cmt)
⇒ EF ⊥ DC
a) Do HE AB (gt)
⇒ ∠AEH = 90⁰
Do HF AC (gt)
⇒ ∠AFH = 90⁰
Do ABC vuông tại A (gt)
⇒ ∠FAE = 90⁰
Tứ giác AEHF có:
∠AFH = ∠AEH = ∠FAE = 90⁰
⇒ AEHF là hình chữ nhật
b) Do AEHF là hình chữ nhật (cmt)
⇒ AF // HE và AF = HE
⇒ FM // HE
Do M và A đối xứng nhau qua F
F là trung điểm của AM
⇒ FM = AF
Mà AF = HE (cmt)
⇒ FM = HE
Tứ giác EFMH có:
FM // HE (cmt)
FM = HE (cmt)
⇒ EFMH là hình bình hành
c) Do MN // AH (gt)
⇒ ∠NMF = ∠FAH (so le trong)
Xét hai tam giác vuông: ∆MNF và ∆AHF có:
FM = AF (cmt)
∠NMF = ∠FAH (cmt)
⇒ ∆MNF = ∆AHF (cạnh góc vuông - góc nhọn kề)
⇒ MN = AH (hai cạnh tương ứng)
Tứ giác AHMN có:
MN // AH (gt)
MN = AH (cmt)
⇒ AHMN là hình bình hành
Mà AM ⊥ HN (HF ⊥ AC)
⇒ AHMN là hình thoi
a: Xét tứ giác AEGF có
\(\widehat{AEG}=\widehat{AFG}=\widehat{FAE}=90^0\)
=>AEGF là hình chữ nhật
b: Ta có: GF\(\perp\)AC
AB\(\perp\)AC
Do đó: GF//AB
Ta có: GF//AB
E\(\in\)BA
I\(\in\)FG
Do đó: EB//FI
Xét tứ giác BEIF có
BE//IF
BF//EI
Do đó: BEIF là hình bình hành
c: Xét ΔABC có
G là trung điểm của BC
GE//AC
Do đó: E là trung điểm của AB
=>AE=EB(2)
Xét ΔABC có
G là trung điểm của BC
GF//AB
Do đó: F là trung điểm của AC
Ta có: AEGF là hình chữ nhật
=>AE=GF(1)
Ta có: BEIF là hình bình hành
=>FI=EB(3)
Từ (1),(2),(3) suy ra GF=FI
=>F là trung điểm của GI
Xét tứ giác AGCI có
F là trung điểm chung của AC và GI
=>AGCI là hình bình hành
Hình bình hành AGCI có AC\(\perp\)GI
nên AGCI là hình thoi
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
b: Xét tứ giác DHEF có
HE//DF
HE=DF
Do đó: DHEF là hình bình hành