K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: AC=căn 15^2-9^2=12cm

BD là phân giác

=>AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=12/8=1,5

=>AD=4,5cm; CD=7,5cm

c: góc AED=góc BEH=90 độ-góc DBC

góc ADE=90 độ-góc ABD

mà góc DBC=góc ABD

nên góc AED=góc ADE

=>ΔADE cân tại A

mà AI là trung tuyến

nên AI vuông góc ED

=>AI vuông góc BD

=>BI*BD=BA^2=BH*BC

=>BI/BC=BH/BD

=>ΔBIH đồng dạng với ΔBCD

=>góc BIH=góc C

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

Suy ra: \(\dfrac{AB}{HB}=\dfrac{BC}{BA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=BC\cdot BH\)(đpcm)

2 tháng 5 2019

a) áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được :

    \(AB^2+AC^2=BC^2\)

   \(9^2+AC^2=15^2\)

    \(81+AC^2=225\)

               \(AC^2=144\)

               \(AC=12\)

Ta có: \(AD+DC=AC\)( hình vẽ )

           \(4,5+DC=12\)

                         \(DC=7,5\)

2 tháng 5 2019

hình tự vẽ đi

d) Xét \(\Delta BAI\)và \(\Delta BDA\)có :

\(\widehat{ABD}\)( chung ) ; \(\widehat{AIB}=\widehat{BAD}=90^o\)

\(\Rightarrow\Delta ABI\approx\Delta DBA\left(g.g\right)\)

\(\Rightarrow\frac{AB}{BI}=\frac{BD}{AB}\)\(\Rightarrow BI.BD=AB^2=81\)

Mà BH.BC = AB2 = 81 ( câu c )

\(\Rightarrow\)BI.BD = BH.BC

\(\Rightarrow\)\(\frac{BH}{BI}=\frac{BD}{BC}\)

Xét \(\Delta BHI\)và \(\Delta BDC\)có :

\(\frac{BH}{BI}=\frac{BD}{BC}\)\(\widehat{DBC}\)( chung )

\(\Rightarrow\Delta BHI\approx\Delta BDC\left(c.g.c\right)\)

\(\Rightarrow\widehat{BIH}=\widehat{BCD}\)hay \(\widehat{BIH}=\widehat{ACB}\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng vơi ΔHBA

b: \(AB=\sqrt{9\cdot25}=15\left(cm\right)\)

c: AD/BD=BA/CB

HE/BE=BH/AB

mà BH/AB=BA/CB

nên AD/BD=HE/BE

=>AD*BE=BD*HE

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc ABC chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: \(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=12/8=1,5

=>AD=4,5cm; CD=7,5cm

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔBCA vuông tại A có AH vuông góc BC

nên AH^2=HB*CH

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm