K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{B}=90^0-\widehat{C}=90^0-52^0\)

hay \(\widehat{B}=38^0\)

Xét ΔABC vuông tại A có

\(AB=BC\cdot\sin\widehat{ACB}\)

\(\Leftrightarrow AB=12\cdot\sin52^0\)

hay \(AB\simeq9.46cm\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=12^2-\left(9.46\right)^2=54.5084\)

hay \(AC\simeq7.38cm\)

Vậy: \(\widehat{B}=38^0\)\(AB\simeq9.46cm\)\(AC\simeq7.38cm\)

10 tháng 9 2020

a) \(tanB=\frac{AC}{AB}=\frac{4}{3}\Rightarrow B\approx53^0\)

\(C=90^0-B\approx37^0\)

Áp dụng định lí PYTAGO cho tam giác ABC vuông tại A:

\(BC^2=AB^2+AC^2=9^2+12^2=225\Rightarrow BC=15cm\)

Có \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\Rightarrow AB.AC=AH.BC\Rightarrow AH=\frac{AB.AC}{BC}=7,2cm\)

b) Vì AD là phân giác tại A của tam giác ABC nên:

\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}\)

Mà \(BD+CD=BC=15\)

\(\Rightarrow\hept{\begin{cases}BD=\frac{45}{7}\approx6,4cm\\CD=\frac{60}{7}\approx8,6cm\end{cases}}\)

14 tháng 6 2017

a) Ta có:

\(h^2=b'.c'=36.64=2304\Rightarrow h=48\left(cm\right)\) (định lí 2)

\(b^2=a.b'=\left(b'+c'\right).b'=\left(36+64\right).3600\Rightarrow b=60\left(cm\right)\)(định lí 1)

\(c^2=a.c'=\left(b'+c'\right).c'=\left(36+64\right).64=6400\Rightarrow c=80\left(cm\right)\)

(định lí 1)

Vậy b = 60cm; c = 80cm; h=48

b) Ta có: \(c^2=a.c'\Leftrightarrow6^2=9.c'\Leftrightarrow c'=\dfrac{36}{9}=4\left(cm\right)\)

mà c' + b' = a \(\Rightarrow b'=a-c'=9-4=5\left(cm\right)\)

\(h^2=b'.c'=5.4=20\Rightarrow h=2\sqrt{5}\left(cm\right)\)

Áp dụng định lí Py-ta-go vào tam giác vuông ABC, ta có: \(b^2=a^2-c^2=9^2-6^2=45\Rightarrow b=3\sqrt{5}\left(cm\right)\)

Vậy h = \(2\sqrt{5}cm;b=3\sqrt{5}cm;\) c' = 4cm; b' = 5cm

21 tháng 2 2021

a/ + Áp dụng hệ thức giữa cạnh và hình chiếu trong ΔΔABC vuông tại A có: AB2 = BC . BH => BH = AB2 : BC Hay BH = 92 : 15 => BH = 5,4 cm + Xét ΔΔABC vuông tại A có : HC = BC - BH Hay HC = 15 - 5,4 = 9,6 => HC = 9,6 cm + Áp dụng hệ thức liên quan đến đường cao trong ΔΔABC vuông tại A có : AH2 = BH . HC Hay AH2 = 5,4 . 9,6 AH2 = 51,84 => AH = √51,8451,84 = 7,2 cm

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)

hay AC=12(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB\cdot AC=AH\cdot BC\)

\(\Leftrightarrow AH\cdot15=9\cdot12=108\)

hay AH=7,2(cm)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=AC^2-AH^2=12^2-7.2^2=92.16\)

hay CH=9,6(cm)

Vậy: AH=7,2cm; CH=9,6cm

11 tháng 12 2020

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AB^2=BC^2-AC^2=12^2-8^2=80\)

hay \(AB=4\sqrt{5}cm\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot12=8\cdot4\sqrt{5}=32\sqrt{5}\)

\(\Leftrightarrow AH=\dfrac{32\sqrt{5}}{12}=\dfrac{8\sqrt{5}}{3}cm\)

Vậy: \(AB=4\sqrt{5}cm\)\(AH=\dfrac{8\sqrt{5}}{3}cm\)

c)

Ta có: D và C đối xứng nhau qua A(gt)

nên A là trung điểm của DC

Xét ΔBDC có 

BA là đường cao ứng với cạnh DC(BA⊥DC)

BA là đường trung tuyến ứng với cạnh DC(A là trung điểm của DC) 

Do đó: ΔBDC cân tại B(Định lí tam giác cân)

\(\widehat{D}=\widehat{C}\)

Xét ΔADE vuông tại E và ΔACH vuông tại H có 

AD=AC(A là trung điểm của DC)

\(\widehat{D}=\widehat{C}\)(cmt)

Do đó: ΔADE=ΔACH(cạnh huyền-góc nhọn)

⇒AE=AH(hai cạnh tương ứng)

mà AH là bán kính của đường tròn (A;AH)

nên AE là bán kính của đường tròn (A;AH)

Xét (A;AH) có 

AE là bán kính(cmt)

AE⊥BD tại E(gt)

Do đó: BD là tiếp tuyến của đường tròn(A;AH)(Dấu hiệu nhận biết tiếp tuyến đường tròn)

5 tháng 8 2018

HS tự làm

21 tháng 10 2021

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

c: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot4.5}{2}=3\cdot4.5=13.5\left(cm^2\right)\)

c) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC, ta được:

\(AH\cdot AC=AB^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABK vuông tại A có AH là đường cao ứng với cạnh huyền BK, ta được:

\(BK\cdot BH=AB^2\)(2)

Từ (1) và (2) suy ra \(AH\cdot AC=BK\cdot BH\)