Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{B}=90^0-\widehat{C}=90^0-52^0\)
hay \(\widehat{B}=38^0\)
Xét ΔABC vuông tại A có
\(AB=BC\cdot\sin\widehat{ACB}\)
\(\Leftrightarrow AB=12\cdot\sin52^0\)
hay \(AB\simeq9.46cm\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=12^2-\left(9.46\right)^2=54.5084\)
hay \(AC\simeq7.38cm\)
Vậy: \(\widehat{B}=38^0\); \(AB\simeq9.46cm\); \(AC\simeq7.38cm\)
a) \(tanB=\frac{AC}{AB}=\frac{4}{3}\Rightarrow B\approx53^0\)
\(C=90^0-B\approx37^0\)
Áp dụng định lí PYTAGO cho tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2=9^2+12^2=225\Rightarrow BC=15cm\)
Có \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\Rightarrow AB.AC=AH.BC\Rightarrow AH=\frac{AB.AC}{BC}=7,2cm\)
b) Vì AD là phân giác tại A của tam giác ABC nên:
\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}\)
Mà \(BD+CD=BC=15\)
\(\Rightarrow\hept{\begin{cases}BD=\frac{45}{7}\approx6,4cm\\CD=\frac{60}{7}\approx8,6cm\end{cases}}\)
a) Ta có:
\(h^2=b'.c'=36.64=2304\Rightarrow h=48\left(cm\right)\) (định lí 2)
\(b^2=a.b'=\left(b'+c'\right).b'=\left(36+64\right).3600\Rightarrow b=60\left(cm\right)\)(định lí 1)
\(c^2=a.c'=\left(b'+c'\right).c'=\left(36+64\right).64=6400\Rightarrow c=80\left(cm\right)\)
(định lí 1)
Vậy b = 60cm; c = 80cm; h=48
b) Ta có: \(c^2=a.c'\Leftrightarrow6^2=9.c'\Leftrightarrow c'=\dfrac{36}{9}=4\left(cm\right)\)
mà c' + b' = a \(\Rightarrow b'=a-c'=9-4=5\left(cm\right)\)
\(h^2=b'.c'=5.4=20\Rightarrow h=2\sqrt{5}\left(cm\right)\)
Áp dụng định lí Py-ta-go vào tam giác vuông ABC, ta có: \(b^2=a^2-c^2=9^2-6^2=45\Rightarrow b=3\sqrt{5}\left(cm\right)\)
Vậy h = \(2\sqrt{5}cm;b=3\sqrt{5}cm;\) c' = 4cm; b' = 5cm
a/ + Áp dụng hệ thức giữa cạnh và hình chiếu trong ΔΔABC vuông tại A có: AB2 = BC . BH => BH = AB2 : BC Hay BH = 92 : 15 => BH = 5,4 cm + Xét ΔΔABC vuông tại A có : HC = BC - BH Hay HC = 15 - 5,4 = 9,6 => HC = 9,6 cm + Áp dụng hệ thức liên quan đến đường cao trong ΔΔABC vuông tại A có : AH2 = BH . HC Hay AH2 = 5,4 . 9,6 AH2 = 51,84 => AH = √51,8451,84 = 7,2 cm
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=15^2-9^2=144\)
hay AC=12(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB\cdot AC=AH\cdot BC\)
\(\Leftrightarrow AH\cdot15=9\cdot12=108\)
hay AH=7,2(cm)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+CH^2\)
\(\Leftrightarrow CH^2=AC^2-AH^2=12^2-7.2^2=92.16\)
hay CH=9,6(cm)
Vậy: AH=7,2cm; CH=9,6cm
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AB^2=BC^2-AC^2=12^2-8^2=80\)
hay \(AB=4\sqrt{5}cm\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot12=8\cdot4\sqrt{5}=32\sqrt{5}\)
\(\Leftrightarrow AH=\dfrac{32\sqrt{5}}{12}=\dfrac{8\sqrt{5}}{3}cm\)
Vậy: \(AB=4\sqrt{5}cm\); \(AH=\dfrac{8\sqrt{5}}{3}cm\)
c)
Ta có: D và C đối xứng nhau qua A(gt)
nên A là trung điểm của DC
Xét ΔBDC có
BA là đường cao ứng với cạnh DC(BA⊥DC)
BA là đường trung tuyến ứng với cạnh DC(A là trung điểm của DC)
Do đó: ΔBDC cân tại B(Định lí tam giác cân)
⇒\(\widehat{D}=\widehat{C}\)
Xét ΔADE vuông tại E và ΔACH vuông tại H có
AD=AC(A là trung điểm của DC)
\(\widehat{D}=\widehat{C}\)(cmt)
Do đó: ΔADE=ΔACH(cạnh huyền-góc nhọn)
⇒AE=AH(hai cạnh tương ứng)
mà AH là bán kính của đường tròn (A;AH)
nên AE là bán kính của đường tròn (A;AH)
Xét (A;AH) có
AE là bán kính(cmt)
AE⊥BD tại E(gt)
Do đó: BD là tiếp tuyến của đường tròn(A;AH)(Dấu hiệu nhận biết tiếp tuyến đường tròn)
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
c: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot4.5}{2}=3\cdot4.5=13.5\left(cm^2\right)\)
c) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC, ta được:
\(AH\cdot AC=AB^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABK vuông tại A có AH là đường cao ứng với cạnh huyền BK, ta được:
\(BK\cdot BH=AB^2\)(2)
Từ (1) và (2) suy ra \(AH\cdot AC=BK\cdot BH\)
Đáp án B