K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AC=căn 10^2-6^2=8

b: Xét ΔCHD vuông tại H và ΔCAB vuông tại A có

góc C chung

=>ΔCHD đồng dạng với ΔCAB

=>CH/CA=CD/CB

=>CH*CB=CD*CA

c: BK=BA^2/BC=3,6cm

AK=6*8/10=4,8cm

Xét ΔBAK có BI là phân giác

nên IK/BK=AI/AB

=>IK/3=AI/5=(AI+IK)/(3+5)=4,8/8=0,6

=>IK=1,8cm

8 tháng 1 2018

Để cái hình vs tên đại diện như hâm ý

19 tháng 2 2018

Bùi Như Lạc cậu cũng hay đi bình phẩm người khác nhỉ chắc cậu hoàn hảo lắm à

19 tháng 4 2022

đề bài thiếu k chứng minh dc nha

20 tháng 4 2022

A B C H I K

a/ Xét 2 tg vuông HAC và tg vuông ABC có

\(\widehat{ACH}=\widehat{BAH}\) (cùng phụ với \(\widehat{ABC}\) ) => tg HAC đồng dạng với tg ABC (g.g.g)

b/

Xét tg vuông ABH

\(AH^2=AB^2-BH^2\) (Pitago) (1)

Xét tg vuông ACH có

\(AH^2=AC^2-CH^2\) (Pitago) (2)

Cộng 2 vế của (1) và (2) có \(2.AH^2=\left(AB^2+AC^2\right)-\left(BH^2+CH^2\right)\) (3)

Ta có 

\(BH^2+CH^2=\left(BH+CH\right)^2-2.BH.CH=BC^2-2.BH.CH\)

Xét tg vuông ABC có \(AB^2+AC^2=BC^2\)

Thay vào (3)

\(2.AH^2=BC^2-BC^2+2.BH.CH\Rightarrow AH^2=BH.CH\)

c/

Xét tg ABH có 

\(\dfrac{IH}{IA}=\dfrac{BH}{BA}\) (1) (trong tg đường phân giác của 1 góc chia cạnh đối diện thành hai đoạn thẳng tỷ lệ với hai cạnh kề 2 đoạn ấy)

Xét tg ACH có

\(\dfrac{KH}{KC}=\dfrac{AH}{AC}\)(2) (trong tg đường phân giác của 1 góc chia cạnh đối diện thành hai đoạn thẳng tỷ lệ với hai cạnh kề 2 đoạn ấy)

Xét tg vuông ABH và tg vuông ABC có

\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) ) => tg ABH đồng dạng với tg ABC (g.g.g)

\(\Rightarrow\dfrac{BH}{BA}=\dfrac{AH}{AC}\) (3)

Từ (1) (2) và (3) \(\Rightarrow\dfrac{KH}{KC}=\dfrac{IH}{IA}\) => IK//AC (Talet đảo trong tam giác) (đpcm)

 

 

23 tháng 4 2021

a)  Xét tam giác BHA và tam giác BAC có

góc BHA= góc BAC (=90)

góc B chung

=> tam giác BHA đồng dạng tam giác BAC (g.g)