K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018
giúp mk nhé
1 tháng 2 2018

ABCDEMNEFIa,Ta có ΔABC cân ở góc A => góc ABC=góc ACB =180(đ)BAC2(1)

Ta có BD=CE(gt);AB=AC(gt)

mà AB+BD=AD và AC+CE=AE

=> AD=AE

=>ΔADE cân tại A ( Có hai góc bằng nhau)

=>góc ADE= góc AED=(180 độ - DAE) :2 (2)

Từ (1) và (2) => góc ABC= góc ADE=góc ACB=góc AED

mà góc ABC và góc ADE ở vị trí đồng vị

=>BC // DE(đpcm)

b)ta có góc ABC= góc MBD (đối đỉnh )

góc ACB= góc NCE( đối đỉnh )

mà Góc ABC=Góc ACB => góc MBD= góc NCE

Xét hai tam giác vuông ΔBMD và ΔCNE

có BD=CE (gt)

góc MBD= góc NCE (c/m trên)

=>ΔBMD=ΔCNE(Cạnh huyền - Góc nhọn)

=> DM=EN(Hai cạnh tương ứng)

c) Gọi giao điểm của AM và BI là E

giao điểm của AN và CI là F

Vì ΔBMD=ΔCNE( chứng minh trên ) =>BM=CN( Hai cạnh tương ứng)

Ta có : Góc ABC= Góc ACB ( gt)

mà Góc ABC + Góc ABM=180 độ ( kề bù)

và Góc ACB+góc ACN= 180 độ ( kề bù)

=>Góc ABM=góc ACN

Xét ΔABM VÀ ΔACN có:

AB=AC(gt)

Góc ABM=Góc ACN(cmt)

BM=CM ( cmt)

=> ΔABM=ΔACN(cgc)

=> Góc AMB=Góc ANC (hai góc tương ứng )

=> ΔAMN Cân ở A ( có hai góc bằng nhau) (đpcm)

D,(hơi dài )

ta có tam giác AMN cân ở A=> AM=AN( hai cạnh bên) (3)

Xét hai tam giác vuông Tam giác EMB và tam giác FCN có:

Góc EMB=góc FNC (cmt)

MB=CN(cmt)

=> tam giác EMB= tam giác FNC ( cạnh huyền -góc nhọn)

=>EM=FN(hai cạnh tương ứng ) (4)

Ta có (3) (4) mà AE+EM=AM và AF+FN=AN

=> AE=AF

Xét hai tam giác vuông tam giác AEI và tam giác AFI có

AI cạnh chung

AE=AF(cmt)

=> tam giác AEI = Tam giác AFI (cạnh huyền-cạnh góc vuông)

=>Góc AIE=Góc AIF( góc tương ứng ) (10)

ta có góc EBM+MBD=góc EBD= góc ABI (đối đỉnh)(5)

góc FCN+NCE= Góc FCE= góc ACI( đối đỉnh )(6)

mà góc EBM= góc FCN (cmt)(7)

góc MDB=góc NCE(gt) (8)

từ (5)(6)(7)(8)=> góc ABI = góc ACI (9)

từ (9) (10)=> góc BAI=góc CAI ( tổng 3 góc của một tam giác ) (đpcm)

Chúc bạn học giỏi nha Thiên Yết >.<

10 tháng 9 2021

các bạn giúp mik với!!!!

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABH}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)(Các cặp cạnh tuong ứng tỉ lệ)

hay \(AB^2=BH\cdot BC\)(đpcm)

b) Xét ΔCHA vuông tại H và ΔAHB vuông tại H có 

\(\widehat{HAC}=\widehat{HBA}\left(=90^0-\widehat{C}\right)\)

Do đó: ΔCHA\(\sim\)ΔAHB(g-g)

Suy ra: \(\dfrac{CA}{AB}=\dfrac{HA}{HB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AC}{HA}=\dfrac{AB}{BH}\)(1)

Xét ΔHBA có BI là đường phân giác ứng với cạnh AH(gt)

nên \(\dfrac{IA}{IH}=\dfrac{AB}{BH}\)(2)

Từ (1) và (2) suy ra \(\dfrac{IA}{IH}=\dfrac{AC}{HA}\)(3)

c) Xét ΔAHC có AK là đường phân giác ứng với cạnh CH(gt)

nên \(\dfrac{CK}{KH}=\dfrac{AC}{HA}\)(4)

Từ (3) và (4) suy ra \(\dfrac{CK}{KH}=\dfrac{AI}{IH}\)

hay KI//AC(Định lí Ta lét đảo)

DD
9 tháng 6 2021

d) Dễ thấy \(E\)là trực tâm của tam giác \(ACE\)(do là giao của hai đường cao \(DK,CH\)). 

suy ra \(AE\perp CD\).

Để chứng minh \(BM//CD\)ta sẽ chứng minh \(AE\perp BM\).

Ta có: 

\(\widehat{CAH}=\widehat{CBA}\)(vì cùng phụ với góc \(\widehat{ACB}\))

suy ra \(\widehat{CAE}=\widehat{ABM}\)

mà \(\widehat{CAE}+\widehat{EAB}=\widehat{CAB}=90^o\Rightarrow\widehat{ABM}+\widehat{EAB}=90^o\Rightarrow\widehat{AMB}=90^o\)

do đó \(BM\perp AE\).

Từ đây ta có đpcm. 

16 tháng 12 2023

a: Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC\left(1\right)\)

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=15^2+20^2=625\)

=>\(BC=\sqrt{625}=25\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot25=15\cdot20=300\)

=>\(AH=\dfrac{300}{25}=12\left(cm\right)\)

b: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(3\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(4\right)\)

Từ (3) và (4) suy ra \(AM\cdot AB=AN\cdot AC\)

=>\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Xét ΔAMN vuông tại A và ΔACB vuông tại A có

\(\dfrac{AM}{AC}=\dfrac{AN}{AB}\)

Do đó: ΔAMN đồng dạng với ΔACB

c: Ta có: ΔABC vuông tại A

mà AK là đường trung tuyến

nên AK=KC=KB

Ta có: KA=KC

=>ΔKAC cân tại K

=>\(\widehat{KAC}=\widehat{KCA}\)

Ta có: ΔAMN đồng dạng với ΔACB

=>\(\widehat{ANM}=\widehat{ABC}\)

Ta có: \(\widehat{KAC}+\widehat{ANM}\)

\(=\widehat{ABC}+\widehat{KCA}=90^0\)

=>AK\(\perp\)MN tại I

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2;CH\cdot BC=CA^2\)

=>\(BH\cdot25=15^2=225;CH\cdot25=20^2=400\)

=>BH=225/25=9(cm); CH=400/25=16(cm)

Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\)

=>\(AM\cdot15=12^2\)=144

=>AM=144/15=9,6(cm)

Ta có: AMHN là hình chữ nhật

=>AH=MN

mà AH=12cm

nênMN=12cm

Ta có: ΔANM vuông tại A

=>\(AN^2+AM^2=NM^2\)

=>\(AN^2+9,6^2=12^2\)

=>AN=7,2(cm)

Xét ΔIMA vuông tại I và ΔAMN vuông tại A có

\(\widehat{IMA}\) chung

Do đó: ΔIMA đồng dạng với ΔAMN

=>\(\dfrac{S_{IMA}}{S_{AMN}}=\left(\dfrac{AM}{MN}\right)^2=\left(\dfrac{4}{5}\right)^2=\dfrac{16}{25}\)

=>\(S_{IMA}=\dfrac{16}{25}\cdot\dfrac{1}{2}\cdot AM\cdot AN=22,1184\left(cm^2\right)\)

16 tháng 12 2023

cảm ơn ạ

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

=>BH/BA=BA/BC

=>BA^2=BH*BC

b: BC=căn 9^2+12^2=15cm

AH=9*12/15=7,2cm